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Déformation des spectres PIR

Les spectres peuvent étre entachés d'effets non-liés a la variable d’intérét.
=> Difficultés pour les modéles
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verre broyé a différentes granulométries [1] mesuré sur différents spectrometres [2]

[1] Phil Williams, Karl Norris, et al. « Near-infrared technology in the agricultural and food industries ». American Association of Cereal Chemists, Inc., 1987.
[2] M. Wohlers, et al. « Augmenting NIR Spectra in deep regression to improve calibration », Chemometfrics and Intelligent Laboratory Systems, 2023, lien.
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Encourager l'invariance aux effets

On voudrait que les modeéles soient invariants ¢ ces effets :

flx) = f(gZNPZ(x)) =7v,f(.) lemodeéle et g, _p,(.) un générateur d'ef fets.

Approches possibles :
« Prétraitements : corriger par g—1, chimiométrie.
- Augmentation de données : estimer un voisinage de x par échantillonnage dans g [3], apprentissage profond.
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[3] O. Chapelle, J. Weston, L. Bottou, et V. Vapnik, « Vicinal Risk Minimization », in Advances in Neural Information Processing Systems, MIT Press, 2000, lien
[4] L. Zhou et al,«Wheat Kernel Variety Identification Based on a Large Near-Infrared Spectral Dataset and a Novel Deep Learning-Based Feature Selection Methody, 2020, lien



n
= Hélio

SPIR () Aioly

Augmentations spectrales : questions de recherche

1. Prée-traitement VS augmentation de données,
quel outil pour I'apprentissage profond ¢

2. Comment faire de bonnes augmentations de
données spectrales ¢
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Augmentation de données spectrales : existant

EMSA, Blazhko et al [5] :
« Utilisent le prétraitement EMSC pour identifier des effets de pentes et effets multiplicafifs.
« Modifient Iégerement chaque effet, de facon indépendante.

— Avantages .
0.6 1 — otz g « Estimation des perturbations & partir des données.
« Possibilité d'ajout de loadings de perturbation.

Limite :
« Hypothese d'indépendance des effets.

Absorbance
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Matrice de corrélation des
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[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric clossific%’rion of infrared spectra», 2021, lien.

[6] P. Mishra et D. Passos, « A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter
prediction in mango fruit », 2021, doi: lien.
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Proposition, hypothese et postulat
Hypothese :

I existe une structure dans les effets qu’il faut respecter, sinon les
augmentations degradent les performances.

Postulat .
Les pré-traitements peuvent étre utilisés pour créer des

augmentations = comparaison
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Proposition, méthode

4 )

Séparation Analyse et
des résidus génération

- Y _ Y,

GI> résidus genéres «—

—— X _résidus = X - X_cor —

— X _corr

A\

X_aug

= Différents prétraitements : EMSC, SavGol et SNV
= Méthode d'analyse, ici ACP, X_résidus = TP’

= Génération de nouveaux résidus :
pour chague composante de I'ACP, new_T;; = old_T.; + € avec ENN(O'%

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, méthode

4 )

Séparation , . Analyse et
P , . — X_résidus = X - X_corr — , ,y i
des residus géneration

- Y _ Y,
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Evaluation des entrainements via la RMSEP :
Entrainements avec...

« Données brutes

« Données prétraitées

« Données augmentées (méthode proposée et EMSA[5])

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Augmentations spectrales : proposition, matériels

Données : [4]

« Mangues, = 12000 spectres pour 4675 fruits

« Probleme :régression de la tfeneur en matiere seche (%), comprise entre 9 et 25%

« Différents lieux de culture, difféerentes saisons : 3 saisons pour I'entrainement, 1 saison de test

Modeéle : [7]
1 convolution avec 1 filtre et 4 couches denses
 Activation ELU

Entrainement :
« Loss RMSE :% L) —y)?
« Un GPU A100

[6] P. Mishra et D. Passos, « A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter

prediction in mango fruit », 2021, doi: lien.
[7] C. Cuiand T. Fearn, « Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration », Chemometrics and Intelligent Laboratory

Systems, 2018, doi: 10.1016/j.chemolab.2018.07.008
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP
Données brutes 1,00
Correction 1,10
EMSC3 Augmentation 0,93
EMSA (a/10) [5] 1,00
Correction 1,00
SavGolw17p2d2 :
Augmentation 0,97
Correction 1,14
SNV :
Augmentation 1,23

RMSEP moyenne sur 10 entrainements.

- Les prétraitements classiques (correction) ne semblent pas étre béenéfiques pour le modele.

*signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP

Augmentation
EMSA (a/10) [5]

Augmentation

Augmentation

RMSEP moyenne sur 10 entrainements.

- Les prétraitements classiques (correction) ne semblent pas étre bénéfiques pour le modele.

*signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP
Données brutes 1,00
Correction 1,10
EMSC3 Augmentation 0,93
EMSA (a/10) [5] 1,00
Correction 1,00
SavGolw17p2d2 :
Augmentation 0,97
Correction 1,14
SNV :
Augmentation 1,23

RMSEP moyenne sur 10 entrainements.

- Les augmentations avec le prétraitement approprié semblent pouvoir bénéficier au modele.

*signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP
Données brutes 1,00
Correction 1,10
EMSC3 Augmentation 0,93*
EMSA (a/10) [5] 1,00
Correction 1,00

SavGolw17p2d2 :
Augmentafion 0,97
Correction 1,14

SNV :
Augmentation 1,23*

RMSEP moyenne sur 10 entrainements.

- Les augmentations avec le prétraitement approprié semblent pouvoir bénéficier au modele.

*signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP
Données brutes 1,00
Correction 1,10
EMSC3 Augmentation 0,93
EMSA (a/10) [5] 1,00
Correction 1,00
SavGolw17p2d2 :
Augmentation 0,97
Correction 1,14
SNV :
Augmentation 1,23

RMSEP moyenne sur 10 entrainements.

- L'hypothese de structure semble vérifiée.

*signifie que le résultat est significativement différent de celui obtenu avec I'EMSA.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Proposition, résultats

Prétraitement Correction / Augmentation RMSEP
Données brutes 1,00
Correction 1,10
EMSC3 Augmentation 0,93*
EMSA (a/10) [5] 1,00
Correction 1,00

SavGolw17p2d2 :
Augmentation 0,97
Correction 1,14

SNV :
Augmentation 1,23

RMSEP moyenne sur 10 entrainements.

- L'hypothese de structure semble vérifiée.

*signifie que le résultat est significativement différent de celui obtenu avec I'EMSA.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra», 2021, lien.
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Limites de la proposition et conclusions

Limites de |Ia proposition :
« On ne simule que des effets présents dans les données.
« Pour avoir une bonne estimation des effets, on a besoin de toutes les composantes et données.

Conclusions :

« La structure des effets doit étre prise en compte pour I'augmentation de données.

« L'augmentation de données semble étfre un meilleur paradigme pour I'apprentissage profond.
« Les méthodes actuelles restent limitées.

16
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Travaux futurs

« Travailler avec des données simulées 2 meilleure vue de ce qui peut éfre fait.
« Utiliser une stratégie d’'apprentissage par renforcement :

/

o

stratégie d’augmentation S

) 4

Modele : entrainement
avec S, obtient score R

Controleur : propose une

J o

J

Principe de AutoAuament [8].

[8] E. D. Cubuk et al, « AutoAugment: Learning Augmentation Policies from Data », 2019, arXiv: arXiv:1805.09501. doi: 10.48550/arXiv.1805.09501.
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