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Déformation des spectres PIR
Les spectres peuvent être entachés d’effets non-liés à la variable d’intérêt. 
➔ Difficultés pour les modèles

[1] Phil Williams, Karl Norris, et al. « Near-infrared technology in the agricultural and food industries ». American Association of Cereal Chemists, Inc., 1987.
[2] M. Wohlers, et al. « Augmenting NIR Spectra in deep regression to improve calibration », Chemometrics and Intelligent Laboratory Systems, 2023, lien.
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Effet de diffusion de la lumière : le même 

verre broyé à différentes granulométries [1]
Effet instrumental : le même fruit (kiwi) 

mesuré sur différents spectromètres [2]
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Encourager l’invariance aux effets
On voudrait que les modèles soient invariants à ces effets :

𝑓 𝑥 = 𝑓 𝑔𝑧~𝑃𝑧 𝑥 = 𝑦 , 𝑓 .  𝑙𝑒 𝑚𝑜𝑑è𝑙𝑒 𝑒𝑡 𝑔𝑧~𝑃𝑧 .  𝑢𝑛 𝑔é𝑛é𝑟𝑎𝑡𝑒𝑢𝑟 𝑑′𝑒𝑓𝑓𝑒𝑡𝑠.

Approches possibles : 

•  Prétraitements : corriger par 𝑔−1, chimiométrie.

• Augmentation de données : estimer un voisinage de x par échantillonnage dans 𝑔 [3], apprentissage profond.

Pré-traitement VS augmentation de données pour la pente, 

gauche : spectre pur, milieu : prétraitement, droite : augmentations (blé [4])

[3] O. Chapelle, J. Weston, L. Bottou, et V. Vapnik, « Vicinal Risk Minimization », in Advances in Neural Information Processing Systems, MIT Press, 2000, lien
[4] L. Zhou et al,«Wheat Kernel Variety Identification Based on a Large Near-Infrared Spectral Dataset and a Novel Deep Learning-Based Feature Selection Method», 2020, lien
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Augmentations spectrales : questions de recherche

1. Pré-traitement VS augmentation de données, 

quel outil pour l’apprentissage profond ?

2. Comment faire de bonnes augmentations de 

données spectrales ?
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Augmentation de données spectrales : existant
EMSA, Blazhko et al [5]  : 
• Utilisent le prétraitement EMSC pour identifier des effets de pentes et effets multiplicatifs.

• Modifient légèrement chaque effet, de façon indépendante.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.
[6] P. Mishra et D. Passos, « A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter 
prediction in mango fruit », 2021, doi: lien.

EMSA sur un spectre de mangues [6]

Matrice de corrélation des 

coefficients EMSC, mangues [6]

Avantages :

• Estimation des perturbations à partir des données.

• Possibilité d’ajout de loadings de perturbation.

Limite :

• Hypothèse d’indépendance des effets.
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Proposition, hypothèse et postulat

Hypothèse : 

Il existe une structure dans les effets qu’il faut respecter, sinon les 

augmentations dégradent les performances.

Postulat :

Les pré-traitements peuvent être utilisés pour créer des 
augmentations ➔ comparaison



= Différents prétraitements : EMSC, SavGol et SNV      

 = Méthode d’analyse, ici ACP, X_𝑟é𝑠𝑖𝑑𝑢𝑠 = 𝑇𝑃′

   = Génération de nouveaux résidus : 

   pour chaque composante de l’ACP, 𝑛𝑒𝑤_𝑇𝐶𝑖  = 𝑜𝑙𝑑_𝑇𝐶𝑖 + 𝜖 avec 𝜖~𝑁(0,
𝜎𝐶𝑖

10
)
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Proposition, méthode

X X_résidus = X - X_corr

+ résidus générés

X_aug

X_corr

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.
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Proposition, méthode

X X_résidus = X - X_corr

+ résidus générés

X_aug

X_corr

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.

Séparation 

des résidus
Analyse et 

génération

Évaluation des entraînements via la RMSEP :

Entraînements avec…

• Données brutes

• Données prétraitées

• Données augmentées (méthode proposée et EMSA[5])
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Augmentations spectrales : proposition, matériels

Données : [6]  

• Mangues, ≈ 12000 spectres pour 4675 fruits

• Problème : régression de la teneur en matière sèche (%), comprise entre 9 et 25%

• Différents lieux de culture, différentes saisons : 3 saisons pour l’entraînement, 1 saison de test

Modèle : [7]

• 1 convolution avec 1 filtre et 4 couches denses

• Activation ELU

Entraînement :

• Loss RMSE : 
1

𝑛
σ𝑖=1

𝑛 (𝑓 𝑥𝑖 − 𝑦𝑖)2

• Un GPU A100

[6] P. Mishra et D. Passos, « A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter 
prediction in mango fruit », 2021, doi: lien.
[7] C. Cui and T. Fearn, « Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration », Chemometrics and Intelligent Laboratory 
Systems, 2018, doi: 10.1016/j.chemolab.2018.07.008
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Proposition, résultats

RMSEP moyenne sur 10 entraînements. 

→ Les prétraitements classiques (correction) ne semblent pas être bénéfiques pour le modèle.

* signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.
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Proposition, résultats

→ Les augmentations avec le prétraitement approprié semblent pouvoir bénéficier au modèle.

RMSEP moyenne sur 10 entraînements. 

* signifie que le résultat est significativement différent de celui obtenu pour les données brutes.

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.
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Proposition, résultats

→ L’hypothèse de structure semble vérifiée.

* signifie que le résultat est significativement différent de celui obtenu avec l’EMSA.

RMSEP moyenne sur 10 entraînements. 

[5] U. Blazhko et al, « Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra », 2021, lien.
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Limites de la proposition et conclusions

Limites de la proposition : 

• On ne simule que des effets présents dans les données.

• Pour avoir une bonne estimation des effets, on a besoin de toutes les composantes et données.

Conclusions :

• La structure des effets doit être prise en compte pour l’augmentation de données.

• L’augmentation de données semble être un meilleur paradigme pour l’apprentissage profond.

• Les méthodes actuelles restent limitées.
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Travaux futurs

• Travailler avec des données simulées → meilleure vue de ce qui peut être fait.

• Utiliser une stratégie d’apprentissage par renforcement :

[8] E. D. Cubuk et al, « AutoAugment: Learning Augmentation Policies from Data », 2019, arXiv: arXiv:1805.09501. doi: 10.48550/arXiv.1805.09501.

Principe de AutoAugment [8].

Contrôleur : propose une 

stratégie d’augmentation S

S

Modèle : entraînement 

avec S, obtient score R

R
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