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Contexte : LabCom Aioly

Etudier les architectures de réseaux de neurones existantes
— ldentifier leurs forces et limites pour les données spectrales.

s
Aiol
Ouvrir les outils a la communauté scientifique et industrielle O Io y

— Favoriser la collaboration, la reproductibilité et I’innovation.

Développer des architectures dediées aux donnees spectrales Acrtificial Intelligence
— Prendre en compte leurs spécificités (structure, bruit, redondance). & Optics |_aboratorY
(AIOLY)

Questionner et améliorer les systemes de mesure
— Optimiser la qualité des données a la source pour de meilleures performances.




Un benchmark des architectures classiques en AP

Questions opérationnelles :

Peut-on entrainer des NN’s «from scratch» ?
Actuellement les réseaux sont réutilisés et affinés pour une nouvelle tache

Quelle architecture semble étre la plus prometteuse ?
Transformers, RNN, LSTM, CNN, State-space model

Peut-on avoir un seul jeu de parametres pour plusieurs bases de données ?
Pour permettre un transfert de connaissances simple

Quel rapport entre gain de performance et complexité de réglage des modeles ?
Peut-on augmenter la complexité méme sur une petite base de donnees ?



Un benchmark des architectures classiques en AP

L_"étude

Comparaison de 4 typologies d’architectures : CNN, ResNet, Inception, Transformer

Etude réalisée sur trois bases de données agroenvironnementales : Mangues, Sols, Blé
Deux taches distinctes : classification et régression

Des tailles de bases de données variées : de 10 000 a 150 000 mesures
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T TWangues ] 05 2

Nb échantillions 11 691 23 447 147 096
Plage spectrale 684-990 400-2500 975-1645
(nm)
Nb variables 103 1075 200
spectrales
Y % DM oC g.kg* 30 variétés
r g e Préediction de Hétérogénéité des Grand nombre de
Spécificité R )
|’année suivante données classes

[1] N.T. Anderson et al., 2020 « Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content » Postharvest Biology and Technology,

168,111202
[2] J. L. Stefanelli et al., 2023 . Open Soil Spectral Library soil (OSSL): Building reproducible soil calibration models through open development and community engagement. bioRxiv

2023.12.16.57201
[3] Zhou, L., Zhang, C., Taha, M. F., Wei, X., He, Y., Qiu, Z., & Liu, Y. (2020). Wheat kernel variety identification based on a large near-infrared spectral dataset and a novel deep learning-based 5

feature selection method. Frontiers in Plant Science, 11, 575810.
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L_es architectures :

CNN 1-D: Cuinet [4] Transformer : SpectraTr [5]
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[4] Cui, C., Fearn, T., 2018. Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration. Chemometrics and Intelligent Laboratory Systems

182, 9-20.
[5] Fu P, et al. SpectraTr: A novel deep learning model for qualitative analysis of drug spectroscopy based on transformer structure[J]. Journal of Innovative Optical Health Sciences, 2022,

15(03): 2250021
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L_es architectures :

Resnet : Resnet-1D [6] Inception : DeepSpectra [7]
X
layer
F(x) | identity
layer
Google’s inception module
x + F(x) (multiple convolutions)

[6] Martins, J., Guerra, R., Pires, R., Antunes, M., Panagopoulos, T., Brazio, A., Afonso, A., Silva, L., Lucas, & Cavaco, A. (2022). SpectraNet-53 : A deep residual learning architecture
for predicting soluble solids content with VIS-NIR spectroscopy. Computers And Electronics In Agriculture, 197, 106945.
[7] Zhang, X., Lin, T., Xu, J., Luo, X., & Ying, Y. (2019). DeepSpectra : An end-to-end deep learning approach for quantitative spectral analysis. Analytica Chimica Acta, 1058, 48-57. 7
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Parametres benchmark :

» Parametres d’apprentissage :
» Taux d’apprentissage (LR)
» Taux de Dropout (DP)

o Parametres dimensions des modeles :
o Taille des filtres
 Nombres de couches
e Dimensions des « blocs »
e.g. (nb encodeurs « transformers », nb mecanismes d’attention)

Au total : 3-60 Combinaisons de paramétres testés selon les combinaisons architecture -BDD
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Reésultats Manques m
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Résultats Manques Test ViT

24 4| CCC: 0.95
N
Model

Best epoch 221 -2

parametres

CuiNet 0.892 0.88 4513 721 18
DarioNet 0.888 0.89 22 637 563 7 5
14 1 6
DeepSpectra 0.989 0.86 36 975 210 = 4
10 1 2
ResNet18 1.020 0.85 61 431 648 0 12 . B 18 20 2 2
State of the art perf : R2= 0,898 RMSE
ResNet50 0.995 0.86 255 607 272 =0.853
ViT-1D 0.746 0.91 814 907 1952 Passos and Mishra 2021 .

https://doi.org/10.1016/j.chemolab.2021.1
04354 10
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Reésultats OSSL

Modeéle PLS

Training and Cross validation performances RMSE and R?
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Reésultats OSSL

Test VIT
RMSEP - BeSt epOCh /FQMSEP 20241 [ ] v -
[ ]
R2=0.98 o d 0
CuiNet 0.272 39 541 o . ) 3o
" - * "l$= ‘.~ 80
DarioNet 0.234 0.96 147 191 154 E o 23 ’ §
= o 0‘.‘_.:‘:1. % o @
g ] & o 5
DeepSpectra  0.229 0.97 370 697 57 I “1 °
- y P ® 40
ResNet18 0.264 0.96 63 377 586 '
: ® ... * L] 20
ResNet50 0.289 0.95 257 553 1000 ; *
: 4 ; : ;
ViT-1D 0.241 0.98 547 249 1673 feal Values
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Reésultats Wheat

Modele PLS - LDA

F1l Score

PLS-DA: F1 Score vs. Number of LVs
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Reésultats Wheat

paramete 'S

CuiNet 0. 0. : 44 382
DarioNet 0.71 0.72 0.72 163 556 309
DeepSpectra 0.85 0.85 0.85 414 814 207
ResNet18 0.68 0.72 0.70 65510 1000
ResNet50

VIT-1D 0.75 0.72 0.79 4193 702 1587

14
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Conclusion :

Peut-on entrainer des NN’s «from scratch» ?
Capable d’apprendre « from scratch » sur des bases chimiométriques sans augmentation de données

Quelle architecture semble étre la plus prometteuse ?
Actuellement les architectures type DeepSpectra ou Transformer semble de distinguer

Peut-on avoir un seul jeu de parametres pour plusieurs bases de données ?
Les architectures actuelles en chimiométrie ne permettent pas de s'adapter a la taille des données d’entrée

Quel rapport entre gain de performance et complexité de réglage des modeles ?

Permet de reproduire ou dépasser les résultats de I’art sur les grandes bases de données méme avec une complexité élevée
Sensibles aux hyperparametres (défaut de convergence / instabilités)

Certains parametres intuitifs selon les propriétés des spectres et de I’application

15
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Perspectives :

» Comparer avec des approches non linéaires en chimiometrie (ex : LW-PLSR)
« Etudier le comportement de la performance en fonction des parametres

» Trouver des compromis entre performances et architectures génériques

Futurs travaux/volonté dans le LabCom :

» Développer avec les chimiometriciens des stratégies de DL adaptées, des premiers résultats montre déja I’intérét des
approches sans modifications

e Nourrir le DL avec les connaissances métiers de la chimiométrie

e Manque d’outils et de protocoles standard

= Mise a disposition d’outils didactiques open source pour le benchmark dans le cadre du Labcom AIOLY
16
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Base de donnees Mangues : préediction %DM

NIR [684 — 990]nm, A = 103 variables (résolution 3 nm)

11 691 spectres (4675 fruits) réplicats

Y = % DM € [9,25]

4 saisons de récoltes (2015-2018)

=> problématique transfert d’étalonnage / écarts de distribution

Jeu nettoyé (DOI: 10.1016/j.chemolab.2021.104287 D. Passos)
Outliers = TZ Hotelling and Q résidus (PLS)

Données brutes filtrées + prétraitées

Prétraitements : SNV + dérivées 1¢7¢, 2n4

N.T. Anderson et al., 2020 « Achieving robustness across season, location and cultivar for a NIRS model for intact
mango fruit dry matter content » Postharvest Biology and Technology, 168,111202 DOI: 10.1016/j.postharvbio.2020.111202
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Base OSSL : prediction taux oC dans les sols ‘ Aioly

VisNIR [350 — 2500]nm, A = 1075 variables (resolution 2 nm)
N spectres = 23447

Y = oC €]0,150] g.kg™?

Hétérogene : nature des sols, sites de mesures, années, instruments,
standards de mesures

J. L. Stefanelli et al., 2023 . Open Soil Spectral Library soil (OSSL): Building reproducible soil calibration

models through open development and community engagement. bioRxiv 2023.12.16.57201
doi: https://doi.org/10.1101/2023.12.16.572011

20
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Base Wheat: classification variétes de grain de ble

Images hyperspectrales SWIR

147 096 spectres , moyenne pour chaque grain de ble

[975 — 1645]nm A = 1075 variables spectrales
Caméra ImSpector V10E; Spectral Imaging Ltd., Oulu, Finland

30 variétés de blé

Zhou, L., Zhang, C., Taha, M. F., Weli, X., He, Y., Qiu, Z., & Liu, Y. (2020). Wheat kernel variety identification
based on a large near-infrared spectral dataset and a novel deep learning-based feature selection method.
Frontiers in Plant Science, 11, 575810. doi:10.3389/fpls.2020.575810
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