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‘ KremsChem Austria is the regional market and technology leader for resins, as well as a

-4 specialist in fine chemicals, surfacing materials and flame retardants.
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‘ KremsChem Austria is the regional market and technology leader for resins, as well as a
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Melamin-Formaldehyde (MF) Resins scch {}
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Melamin-Formaldehyde (MF) Resins scch {}
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» Degree of polymerization/cross-linkage determines Spectroscopy

mechanical, thermal and electrical properties of MF resin
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Chemometrics as a Service (MetaLink) scch {}
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Time delay

betwaen Iwo meassremesls

Figure 1: Comparison of typical time delays in off-line,
at-line, on-line and in-line measurement approaches.

* Inline FTNIR Process Spectrometer (iRed)

o (Fabry-Pérot) Micro Spectrometer (Spectral Engines)

40-50 k€
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Data Processing/Chemometrics
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Vorhersage Referenzwert

R?=0,9811
RMSECV=0,0718

15 2 25 3 35

Referenzwert (a.u.)

Diagramm mit vorhergesagten Werten. Der grofse Determinations-
koeffizient bestdtigt die gute Eignung des zugrundeliegenden Modells

» Spectroscopy = Hardware & Experimentation & Data Processing (Chemometrics)



Experimentation - Robustness scch {}
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» Spiking experiments 1
— Robustify calibration against known sources of variability 0 02
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— Validation!



scch {}

Chemometrics



Data set shift & Model drift
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JM Roger et al. 2025
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Outlier Stat.

Roger, J. M., Diaz, V. F., & Langerodi, R. N. (2025). Cloning instruments, model maintenance and calibration transfer. TrAC Trends in Analytical Chemistry, 118319.
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* Known (AT) and unknown (!) sources of variability
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Temperature
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» Temperature correction
» ,Spiking“ experiments
» Modeling out the temperature dependence
* Variable selection

19
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« Modeling out the temperature dependence Batch time [a.u.]

» Variable selection

20



Variable Selection scch {}

Fused Stagewise
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b Temperature CorreCtlon 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
» Spiking experiments Malli et al. 2015

» Modeling out the temperature dependence
» Variable selection

Malli, B., & Natschlager, T. (2015). Fused stagewise regression—A waveband selection algorithm for spectroscopy. Chemometrics and Intelligent Laboratory Systems, 149, 53-65.
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Unknown Drift

Calibration Data Removal of Drift Component
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* Removing unknown sources of variability

— Preprocessing
22



Drift Detection scch {}

Prediction Error
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Nikzad-Langerodi et al. 2018

« Traditional outlier stats (T2, Qg,s)
» False Alarms
* Violation of crit. limits not always useful

Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., & Brandstett
model adaptation. Analytica Chimica Acta, 1013, 1-12.
23



Drift Detection
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Model 1

Model 2
X . —_—
Test .

é } Committee Disagreement
Model Z

YPredicted

Nikzad-Langerodi et al. 2018

» ,Committee Disagreement*

» Prediction variance of a PLS ensemble

Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., & Brandstetter, M. (2018). Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and
model adaptation. Analytica Chimica Acta, 1013, 1-12.

24



Model Maintenance scch {}
(Dynamic)

Fuzzy - PLS
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* Fuzzy Systems & Latent Variable Models
« ,Locally Weighted Regression*

* (Unsupervised) updating of fuzzy rule bases

Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., & Brandstetter, M. (2018). Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and
model adaptation. Analytica Chimica Acta, 1013, 1-12.
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Transfer Learning/Domain Adaptation

-
analytical.
c emIStry & Cite This: Anal. Chem. 2018, 90, 66936701

pubs.acs.org/ac
0.075 A
Domain-Invariant Partial-Least-Squares Regression 0.050
Ramin Nikzad-Langerodi, ™™ Werner Zellinger, Edwin Lughofer, and Susanne Saminger-Platz
0.025 A
Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040 Linz, Austria
© Supporting Information 3 0.000 -
-9
ABSTRACT: Multivariate calibration models often fail to Source Domain PLS
extrapolate beyond the calibration samples because of changes - —0.025 1
associated with the instrumental response, environmental [3]Ys s1. " '
condition, or sample matrix. Most of the current methods A“ M\\\'\\f\\% ﬁ& g Lo s —0.050 1
used to adapt a source calibration model to a target domain gl 6] TSP o v X .
exclusively apply to calibration transfer between similar e
analytical devif:es, while generil:: 'methods for t:':a]jbratiun‘ Target Domain di-PLS _0.075 -
model adaptation are largely missing. To fill this gap, we =
here introduce domain-invariant partial-least-squares (di-PLS) o - LR
regression, which extends ordinary PLS by a domain ‘ {V\-E_ ‘@ b P d T T T T T T T T
regularizer in order to align the source and target distributions v a =0.75 —=0.50 —0.25 0.00 0.25 0.50 0.75 1.00
in the latent-variable space. We show that a domain-invariant ™ Measured PC1
weight vector can be derived in closed form, which allows the
Nikzad-Langerodi et al. 2018 https://github.com/RNL1/Melamine-Dataset = Melamine

 Transfer Learning Recipes
* Re-use Data/Model from related domain to help learning in new

domain (e.g., recipe/device etc.)

Nikzad-Langerodi, R., Zellinger, W., Lughofer, E., & Saminger-Platz, S. (2018). Domain-invariant partial-least-squares regression. Analytical chemistry, 90(11), 6693-6701.
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Transfer Learning/Domain Adaptation

Nikzad-Langerodi et al. 2018
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 Partial Least Squares with Domain Regularization https://github.com/B-Analytics/diPLSIlib

« Aligns Distributions in Latent Space

Nikzad-Langerodi, R., Zellinger, W., Lughofer, E., & Saminger-Platz, S. (2018). Domain-invariant partial-least-squares regression. Analytical chemistry, 90(11), 6693-6701.
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RESEARCH ARTICLE

Partial least squares regression with multiple domains

Bianca Mikulasek' | WValeria Fonseca Diaz®® |
Christoph Herwig' | Ramin Nikzad-Langerodi’

David Gabauer® |

'TU Wien, Vienna, Austria
Abstract

This paper introduces the multiple domain-invariant partial least squares
(mdi-PLS) method, which generalizes the recently introduced domain-
invariant partial least squares method (di-PLS). In contrast to di-PLS which
solely allows transferring of knowledge from a single source to a single target
domain, the proposed approach enables the incorporation of data from an

arbitrary number of domains. Additionally, mdi-PLS offers a high level of flexi-
hilitv by arrentine lahalad famervicad)y and unlabelad fomamenieady data tn

*KU Leuven, Leuven, Belgium

*Software Competence Center Hagenberg
(SCCH) GmbH, Hagenberg, Austria

Correspondence

Ramin Nikzad-Langerodi, Software
Competence Center Hagenberg (SCCH)
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Email: ramin.nikzad-langerodi@scch.at

 mdi-PLS
» Global models over multiple domains
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T T
10.0 125 15.0

Predicted

scch {}

Predictions in Target Domain 2

15.0

12.5

10.0 A

7.5 1

5.0 1

2.5 1

0.0 4

—2.54

-5.0

‘u".

'

."’

T T T
-5.0 -25 00 25 50 75

T T
10.0 125 15.0
Measured

Mikulasek et al. 2023

28



Model Maintenance scch {}
Transfer Learning/Domain Adaptation
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. . . . Nikzad-Langerodi & Sobieczky 2021
« Domain regularization for calibration transfer

Nikzad-Langerodi, R., & Sobieczky, F. (2021). Graph-based calibration transfer. Journal of Chemometrics, 35(4), €3319.
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Cloning instruments, model maintenance and calibration transfer

Jean-Michel Roger **, Valeria Fonseca Diaz*, Ramin Nikzad Langerodi®

*[TAF INRAF, Institut Agro, University Monipellier, Montpellier, 34196, France
b Chemlfose Research Growp, Montpellier, 34196, France
E Pt Criomes v Cofsmes Fremestimrs ot Thassmhores (SFCH) Gall, Fogenberg, Austria

sTRACT

iterature on the application of Non-Destructive Spectral Sensors (NDSS) reports proofs of concept limited
del caleulation (ealibration) and its application on a so-called independent data set (validation, or test).
rer, developing NDSS also requires proving that the performance obtained during this first validation
15 valid when conditions change. This generic problem is referred to as robusiness in chemometrics. When
easurement conditions change, the measured spectrum is subject to a deviation. The reproducibility of
odel, and thus of the sensor, with respect to this deviation, defines its robustness. The application of
involves a large number of processes, and thus deviation sources. Instrument cloning, between laboratory
ments or from a benchiop to an online device, is certainly the most concerning issue for deploying NDSS-
applications. This problem has been studied for many years in chemometrics, under the paradigm of
ation transfer, through geometric corrections of specira, spectral spaces, or calibration model corrections.
ame problem has been add d in the hine i ity under the domain adaptation
#m. Although all these izsues have been addresced separately over the last twenty years, they all fall
the zame topic, i.e., model maintenance under dataset shift. This paper aims to provide a vocabulary of
ots for formalizing the calibration model maintenance problem, reviewing recent developments on the
t, and categorizing prior work according to the proposed concepts.

Chéve ta SFamtce!
 Further Reading

Roger et al. 2025

Nikzad-Langerodi, R., & Andries, E. (2021). A chemometrician's guide to transfer learning. Journal of Chemometrics, 35(11), e3373.
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In this issue:
Special feature: A chemometrician’s guide to transfer leaming
By Ramin Nilzad-Langerodi and Erik Andries

The Chemometrics Column: Contingency tables, confusion matrices, classifiers and quality of prediction
By Richard Brereton
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ael "

Nikzad-Langerodi & Andries 2021
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* Bringing NIR to industry requires an interdisciplinary effort

e Spectroscopy = Sensor + Experiment + Chemometrics

* Industrial projects are important drivers of scientific
advancements (in chemometrics)

31
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