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Growing interest for Machine Learning models < _ Artificial
y intelligence
> © Gain of performance: able to model more complex

relationships (non-linearity, variability, ...) Lot
> @ Loss of interpretability: « black-box » models Machine
> @ Increased risk of over-fitting Learning
— j
CART ) (ML) —
\ RF
=> Need for interpretability tools a—— C———
Multivariate linear
1. EXplain mOdE|S \SVM ) \Bz)(gst ) \tchstcs
* Understand which variables are important to obtain the | : i %
predictions i %
e Check if the model « makes sense » chemically Na'ﬁfq')ks %
2. Diagnose overfitting: 5
* Help to avoid overfitting during the optimization of model | \|£§§lﬁg %
hyperparameters S
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Create
interpretable

models (intrinsic) (PLS; MLR, )

\

Purposes of
interpretability

:> Linear model coefficients

7 Interpretability
HIME methods
SHAP
P-vector Explain black-box
models (post-hoc)
Pseudo-samples
Sensitivity tests
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models (intrinsic) (PLS; MLR, ) Pseudo-samples

\

Purposes of
interpretability

Model Specific

vs Agnostic
) Interpretability
LIME methods
SHAP
p- t Explain black-box LIME
g vec IOr models (post-hoc) SHAP
Pseu 'O'-Sfamp es Sensitivity tests
Sensitivity tests

Data types

Chemical analysis data
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Interpretability methods

e LIME: Local interpretable model-agnostic explanations
> Explains the prediction of individual samples by fitting a surrogate interpretable model (ex: LASSO
regression)

> Generates « perturbed samples » and computes their prediction by the black-box model, then
trains the local interpretable model on the « perturbed samples » weighted by their proximity to
the explained sample

> Available in Matlab, Python, R, ...

* SHAPl: Shapley additive explanation

> Explains the prediction of individual samples by combining Shapley values from game theory
(average contribution of each « player », or variable, to the total « gain », or difference from the
average prediction) with local model explanations

> Available in PLS_Toolbox®, Matlab, Python, R, Julia, ...
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Interpretability methods

* Pseudo-samples!t!

> Approximates kernel-based model coefficients by predicting a matrix of dummy samples, for which
all variables except for one have their value set to O (the non-null variable takes a value in the range
of spectral intensity)

> Computable in Matlab, Python, R, Julia, ...

e Sensitivity tests
> Compares the predictions obtained with different perturbations of the original data one variable at
a time, such as the difference of prediction obtained when the intensity of each variable is:
* increased or decreased by 1%!2
* increased by 1% of its standard-deviation!3!
e replaced by O
> Available in PLS_Toolbox® and computable in Matlab, Python, R, Julia, ...
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Application — dataset presentation
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TecatO r d ata Set* *Source : http://lib.stat.cmu.edu/datasets/tecator
> Data description

* Near Infrared spectroscopic data on raw meat (FOSS Tecator Infratec Food and Feed Analyzer)
e 3 guantitative responses: moisture content, fat content, protein content
> Effect of preprocessing — example for moisture

e 2ndderivative corrects for baseline variations and enhances peaks

* SNV (Standard Normal Variate) corrects for multiplicative effects and enhances the gradient of spectral intensity as a function of moisture
but distributes the information over the different wavelengths

Raw spectra After SG 2nd derivative (15,2) After SG 2nd derivative (15,2) + SNV
Raw calibration spectra colored by moisture content Pretreated calibration spectra colored by moisture content Pretreated calibration spectra colored by moisture content
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Application — dataset presentation

Tecator dataset: responses visualization

> Strong correlations between the 3 responses, especially between fat and moisture

> Preprocessing increases the correlations between spectra and moisture content, but not only for the water band
(SNV, correlation with other responses)

Correlation between calibration spectra and moisture content
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Predicted value
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Tecator dataset: prediction of moisture content
> 130 samples in calibration set / 86 samples in test set
> Model optimization by cross-validation (KFold, 5 groups)
> Spectral preprocessing: Savitzky-Golay 2" derivative + SNV+ mean center

PLS regression : predicted vs reference Y (moisture)
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SVM regression: predicted vs reference Y (moisture)
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SVM parameters:

. RBF kernel
e Epsilon=0.1
. Cost = 4000

. Gamma = 0.004

Predicted value

ANN regression: predicted vs reference Y (moisture)
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ANN parameters:

* |Ibfgs solver

* tanh activation function
1 hidden layer

* 2 neurons per layer

* Learningrate=0.01
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Criterion using SHAP values

> Method based on the computation of SHAP values

for each model

> Different amplitude but similar shape to PLS
coefficients for PLS, SVM and ANN models

SHAP values criterion

Pretreated calibration spectra colored by moisture content

@ Computation time can be long

© Similarity with PLS regression coefficients
© Seems applicable to spectroscopic data
despite correlations between variables
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Criterion using pseudo-samples

> Method based on the computation of pseudo- ™

100 4

samples predictions for each model
> Different amplitude but similar

coefficients for PLS and SVM models, but "1

_50 4

inconsistent profile for ANN
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shape to PLS
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Criterion using pseudo-samples

> Method based on the computation of pseudo-samples

predictions for each model

> Different amplitude but similar shape to PLS coefficients

for PLS and SVM models

Pseudo-samples criterion

Pretreated calibration spectra colored by moisture content

© Similarity with PLS regression coefficients
© Seems applicable to spectroscopic data
despite correlations between variables

@ Not adapted for ANN
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Criterion using sensitivity test

> Method based on the computation of a sensitivity test
around the mean spectrum for each model

> Very similar to PLS coefficients for PLS model, and
consistent shape and amplitude for SVM and ANN

Sensitivity test criterion

Pretreated calibration spectra colored by moisture content

despite correlations between variables
© Short computation time

© Similarity with PLS regression coefficients
© Seems applicable to spectroscopic data
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Overfitting detection

Tecator dataset: prediction of moisture content

> Comparison between optimized models (top) and models of greater complexity (bottom)

> Example with sensitivity test method
PLS (8 LV) SVM (g=0.1 / C=4000 / y=0.004) ANN (1 hidden layer of 2 neurons / 0=0.01)
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=» Explainable Al / Interpretability tools for Machine Learning

1. Explain models: understand model structure by estimating model coefficients

2. Diagnose overfitting: help to optimize hyperparameters and avoid overfitted ML models
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=» Explainable Al / Interpretability tools for Machine Learning

1. Explain models: understand model structure by estimating model coefficients

2. Diagnose overfitting: help to optimize hyperparameters and avoid overfitted ML models

e The different methods result in good approximations of the PLS regression coefficients
> © Can be used to explain Machine Learning models applied to spectroscopic data
> © Can be used to diagnose overfitting by checking the amount of noise
> @ Longer computation time for the method based on SHAP values
> @ Method based on pseudo-sample predictions is not applicable to ANN
>

© Sensitivity tests are easy and fast to compute, and applicable to all models tested
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=» Explainable Al / Interpretability tools for Machine Learning

1. Explain models: understand model structure by estimating model coefficients

2. Diagnose overfitting: help to optimize hyperparameters and avoid overfitted ML models

e The different methods result in good approximations of the PLS regression coefficients
> © Can be used to explain Machine Learning models applied to spectroscopic data
> © Can be used to diagnose overfitting by checking the amount of noise
> @ Longer computation time for method based on SHAP values
> @ Method based on pseudo-sample predictions is not applicable to ANN
> © Sensitivity tests are easy and fast to compute, and applicable to all models tested

e Interpretability methods can be computed with various software/languages
> PLS Toolbox, Matlab, Python, R, Julia, ...
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Thank you for your attention!
Any questions?

Q&\ ?) R&D Services F{? Software
> Feasibility studies > PLS_Toolbox®
> Model development > SOLO®

> Model transfer

||Efo?‘| Training / Coaching
Y'Y Training in advanced methods of
Machine Learning

> Open-courses: 14-15 Oct. 2025
> In-house training sessions
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