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Plan

1990’s => Fac de chimie organique

Bon rendement / produit pur Caractérisation structurale :
RMN, MIR, UV-Visible

Prémices de la chimiométrie Quantification : NIR

Maintenant : PLSR, PLSDA, Multiblocs exploratoire, prédictif… 

Utilité ? Comparaison de méthodes..



Présentation des données
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8 beurres (80-82% de MG)+ 13 margarines (34-80% MG)
Prétraitement SNV

En France, le beurre doit contenir 82 % de matières grasses (80 % pour les beurres salés ou demi-sel),



Objectifs

• Explorer la variabilité contenue dans chaque bloc => ACP
• Distinguer la variabilité spécifique à chaque bloc de celle 

commune à tous les blocs => MB-PCA
• Décomposer de façon supervisée la variabilité (commune 

vs spécifique) contenue dans les blocs => SO-PLS
• => / teneur en matière grasse
• => / type de matière grasse : animale vs végétale



ACP par blocs
centrage



ACP bloc visible
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Loadings liés à la variation de couleur dans le jaune sur PC1 beta-carotène (B)??
Loadings liés à la variation de couleur dans le jaune sur PC2 : additif colorant jaune (M)
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ACP bloc NIR
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First and second loadings

Dim1

Dim2

Séparation des échantillons en fonction de la teneur en MG/eau
Loadings liés à la variation des bandes liées à l’eau sur PC1 : 1440, 1930 (nég)
Loadings liés à la variation des bandes liées à la matière grasse sur PC1 : 1210,1730, 1740, 2310, 2350 (pos)
Loadings liés à la variation de de l’interaction eau-protéine PC2 : 1920 ??

Teneur en eau Teneur en matière grasse (MG)



ACP bloc MIR
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MIR First and second loadings

Dim1

Dim2

Séparation « franche » des échantillons en fonction de la catégorie Beurre/margarine
Loadings liés à la variation des pics liés à l’eau sur PC1 : 3370 (nég) [et 3010 pour cis]
Loadings liés à la variation des pics liés à la présence de double liaisons « trans » sur PC1 : 2851, 2920 (pos)
Loadings liés à la variation des pics liés à la présence de double liaisons « cis » sur PC2 : 2853, 2916 (neg)



ACP multi-blocs (MB-PCA)
centrage



Scores MB-PCA
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Axe 1 : Séparation pas claire : combinaison des bandes liées à l’eau (NIR) et à doubles liaisons cis (MIR)?
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Scores MB-PCA
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Axe 2 : Bonne séparation des échantillons en fonction de la catégorie Beurre/margarine et teneur MG : 
opposition lipides≠eau en NIR + doubles liaisons « trans » MIR
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Scores mono- vs multi- blocs

Ajustement de la direction des
composantes :
-> Dim 1 : mélange des 3 domaines
spectraux
-> Dim 2 : Perte de précision des
composantes communes (% MG)
par rapport au composantes
spécifiques



Décomposition de la variabilité
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SO-PLS vs MG
Données SNV
Package Matlab : Federico Marini
Package « R » Rchemo Marion Brandolini-Bunlon & Matthieu Lesnoff



MIR + NIR + VIS

• Pretraitement = centrage ‘mean’
• Model.CV : 

• Leave-one-out

• LVopt: [0 6 0] [MIR NIR VIS]
• r2opt: 0.9942
• rmsecvopt: 1.3460

model.CV.predYopt

ans =

80.5292
82.0847
82.2180
67.7924
82.3725
82.8480
82.3427
80.8525
71.6446
33.2823
37.6678
39.0606
57.5636
65.7025
37.2263
59.2315
80.0352
58.5618
59.4874
37.4561
74.1577

MG.d

ans =

80
82
82
70
82
82
82
82
70
34
38
38
60
62
35
59
80
59
59
38
75



Mageplot + Scores
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Très bonne prédiction de la teneur en MG, faible erreur, séparation correcte des échantillons
6 LV optimales : toutes dans le NIR, mais 2 LV suffisent pour avoir un modèle plus parcimonieux.



Conclusion teneur en MG

Pas de blocs MIR ou VIS, car pas trouvés dans model optimal
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MIR + NIR + 
VIS

LV opt 0 – 6 - 0

R² opt 0.9942

RMESCV opt 1.3460

Meilleur modèle obtenu avec NIR => le plus 
performant pour prédire la teneur en MG,



SOPLS beurre margarine B/M
Y = codage Beurre/Margarine



Sequential and Orthogonalized-PLS (DA)
C: bloc à expliquerA: bloc explicatif

B: bloc explicatif additionnel

1. Régression PLS de A sur C

3. Régression PLS de 𝐁𝐁𝐨𝐨𝐫𝐫𝐫𝐫𝐫𝐫 sur la matrice de résidus 𝐸𝐸(𝐶𝐶←𝐴𝐴)

2. Orthogonalisation de B par rapport aux composantes obtenues

4. Prédiction finale de C, par addition des predictions des 2 modèles de regression
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MIR + NIR + VIS

• Pretraitement = centrage ‘mean’
• Model.CV : 

• LDA sur y prédits
• Leave-one-out 

• LVopt: [3 0 0] [MIR NIR VIS]
• accuracyopt: 0.9524
• rmsecvopt: 0.3588

model.CV.predclassopt

ans =

1
1
1
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2

BM.d

ans =

1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2



Mageplot + concscores
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NB : sur la base de l’erreur de classification, on aurait 1 LV pour un modèle plus parcimonieux. De fait, il n’y 
a que deux niveaux au facteur « typologie de produit », donc on ne devrait avoir qu’une composante.



Conclusion
B vs M
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accuracyopt 0.9524
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Conclusion

• Dans ces travaux avec uniquement des blocs spectroscopiques:
• « Faible » apport de la MB-PCA pour distinguer les produits en 

fonction de MG et typologie.
• Fort apport de la SO-PLS qui :

• Permet de savoir quels sont les blocs qui portent de l’information et combien 
de composantes par bloc sont nécessaires,

• Confirme le savoir du chimiste sur les méthodes à utiliser en fonction du but 
recherché.

Merci de votre attention
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