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 BHB (beta-hydroxybutyrate) dataset

• Biomarker of ketosis in milking cows

Clément Grelet
CRA-W Gembloux
Quality and authentication of agricultural products Unit



3BHB concentration in blood

Possible alternative?

MIR spectrometry

on milk samples

Usual
Blood sampling

2 classes
Low ≤1.2 mmolg/L 

High >1.2 mmol/L ⇒ Disease
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564 herds        N = 4,220 milk samples (MIR)
Milk samples have been analyzed with 34 spectrometers, 
in particular FT2, FT6000, FT+, and FT7 (Foss, Hillerød, Denmark), 
and standard lactoscopes FT-MIR automatic (Delta Instruments, Drachten, the Netherlands). 

The MIR spectra from the different instruments were standardized to be merged into a 
common dataset

C. Grellet

The selected spectral area consisted of 212 wavelengths
• 968.1 – 1,577.5 cm−1

• 1,731.8 – 1,762.6 cm−1

• 1,781.9 – 1,808.9 cm−1

• 2,831.0 – 2,966.0 cm−1

to exclude areas not reproducible between instruments. 

The spectra were pretreated by a first derivative
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BHB
Low High

Training (3/4) 2,939 256

Test (1/4) 953 72

48 herds

16 herds

N = 4,220 samples

~7-8%
 Unbalanced classes



7Theoretical aspects

Usual PLSDA  (simpler)

= PLSR-DA

= PLS-MLR-DA

Other methods not considered here
• PLS-LDA
• PLS-QDA
• PLS-KDEDA
• etc.
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(2) + (3) =    PLSR2  { X , Ydummy }
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Prediction 
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• (2) : PLS2 { X , Ydummy}  T

• (3) : MLR { T , Ydummy }  �y

Bias if classes unbalanced 

Dominant class is favored in the 
predictions
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Simple approach to decrease the bias

• Weighting the PLS
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Usual PLSR 

Means 1’X

Covariances T’y

MLR 𝛽̂𝛽 (T’T)-1T’y

Weighted PLSR 

1’ D X

T’ D y 

(T’ D T)-1T D’ y



16

D =  
𝑤𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑤𝑛𝑛

such as    Σiwi, A = Σiwi, B = Σiwi, C = 1/3

n × n

weight
class B

weight
class A

weight
class C
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BHB dataset

Replicated K-Fold CV
K = 3,    nrep = 50

BHB
Low High

Training (3/4) 2,939 256

Test (1/4) 953 72Generalization error
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
∑𝑖𝑖=1𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝐺𝐺

When validation / test sets are unbalanced 

Nb. classes
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Usual PLSRDA



20Test set results
Usual PLSRDA with 15 LVs     

Predictions
Low High

Observed
Low 100 0 Row %
High 92 8 Row %

Mean ERRP = 46%
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Weighted 
PLSRDA



22Test set results
Weighted PLSDA with 15 LVs     

Predictions
Low High

Observed
Low 87 13 Row %
High 18 82 Row %

Mean ERRP = 16%



23Conclusions
• PLSRDA: simple, very fast (can manage very large DB)

− But only recommended when few classes (2-3)
− And highly biased when unbalanced classes

• Easy solutions to remove the bias
− Weighting: very performant (should be the default)
− Sub-sampling the classes to balance the training 

(but loss of information)

• Other PLSDA methods (e.g. probabilistic) 
less sensitive but can also be weighted

• Weighted PLSRDA in practice, see next slides
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model = plsrda(nlv = 20, prior = :unif)

fit!(model, Xtrain, ytrain)
pred = predict(model, Xtest).pred

Weighting
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Also possible with package rchemo

Brandolini-Bunlon M. et al. 

https://cran.r-project.org/web/packages/rchemo

(But: a weight vector has to be specified manually
before the model fitting)



Thank you!
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