# EVALUATION OF RAMAN, MID-IR, AND NEAR-IR SPECTROSCOPIES FOR IN-LINE MONITORING OF AN API SYNTHESIS STEP TO REPLACE HPLC

NOEMIE CAILLOL, JULIEN LEFEVRE, **DENNISSE AVELLA**, MARION GOURRAUD, DAVID SPEYBROUCK (ORIL INDUSTRIE)



La plateforme d'innovation collaborative Chimie-Environnement



- Axel'One is a **collaborative innovation platform** created in 2011.
- Its innovative proposals help chemistry industries to reduce costs, risks and environmental impact.
- It develops innovative projects mainly focused on:
  - Catalysis and energy efficiency,
  - Advanced and bio-sourced materials
  - Optimized intelligent processes





#### SUPPORT FOR YOUR ONLINE ANALYSIS PROJECTS FROM LABORATORY SCALE TO INDUSTRIAL IMPLEMENTATION





- Servier is the 34th largest pharmaceutical group worldwide and the 2nd in France.
- Oril Industrie manufactures almost 98% of Servier's API (Active Principal Ingredients), with nearly 2000 tons per year.
- 60 Years of production and 20 APIs produced and distributed.
- Oril Industrie represents 10% of French pharmaceutical chemistry and reports a 10% investment in safety and the environment.









Oril Industrie reports the monitored **R1+I1%** at the end of this synthesis step

- Spectroscopic In-line monitoring to replace off-line HPLC.
- Sampling must be done between 65-85°C to avoid crystallization.
- The sample contains components with harmful effects.



Define between Raman, MIR, and NIR, the most suitable spectroscopic technique to in-line monitor that the concentration of R1+I1 at the end of the synthesis step is lower than 2.0%, with an expanded absolute uncertainty lower than 0.05% (k=2).





#### **IN-REAL TIME ANALYSIS**



- Optimize the process and product quality.
- Impact less on the thermodynamics of the process.
- Better
  representativity
  in the analysis.









- Linear combination (projection of latent variables (PCs)) of the information content in the initial variables about the variations between samples
- Information about variance between samples is condensed.
- Exploration of similitudes and differences between samples.





- Regression algorithm that models X data according to Y data.
- Projection of variables in X that best predict Y.
- Maximizing covariance between X and Y.
- The RMSE represents the residual variance for individual responses.
- RMSEP is a measure of the average uncertainty that can be expected when predicting Y for new samples.

## **METHODOLOGY**



La plateforme d'innovation collaborative Chimie-Environnement



#### **HPLC REFERENCE METHOD**





### SPECTROSCOPIC IN-LINE MONITORING

| Raman<br>(Viserion-Indatech)                       | MIR<br>(MB3000-ABB)                      | NIR<br>(Matrix F-Bruker)                 |  |
|----------------------------------------------------|------------------------------------------|------------------------------------------|--|
|                                                    |                                          |                                          |  |
| 300-3300 cm <sup>-1</sup><br>(laser 785 nm, 500mW) | 530-2000 cm <sup>-1</sup>                | 4000-12000 cm <sup>-1</sup>              |  |
| 4 cm <sup>-1</sup> resolution                      | 4 cm <sup>-1</sup> resolution            | 4 cm <sup>-1</sup> resolution            |  |
| 0.5 mm focal distance                              | ATR (diamond)                            | Optical path of 2 mm                     |  |
| Integration time 20 seconds 3 scans per spectrum   | 22 scans<br>(Approx. 1 min per spectrum) | 60 scans<br>(Approx. 1 min per spectrum) |  |

**ATR** (Attenuated Total Reflectance)





- A. Probes in the rear openings
- B. Dropping funnel for liquids addition
- C. Agitator in the central opening
- D. Dean-Stark head
- E. Connection to the condensation system
- F. Frontal opening for solids addition and sampling
- G. Reactor
- H. Connection to thermal regulation



- A. Raman probe
- B. NIR probe
- C. Agitator (150 rpm)
- D. E and F temperature probes



SYNTHESIS STEP

Axel'One





#### SYNTHESIS REPLICATES

| Synthesis   | Temperature | Reactants ratio            |  |  |
|-------------|-------------|----------------------------|--|--|
| S01         | 0 – Medium  | +1 – High concentration R1 |  |  |
| <b>S</b> 02 | 0 – Medium  | 0 – Industrial conditions  |  |  |
| <b>S</b> 03 | +1 – High   | 0 – Industrial conditions  |  |  |
| S04         | -1 – Low    | +1 – High concentration R1 |  |  |
| S05         | -1 – Low    | 0 – Industrial conditions  |  |  |
| <b>S</b> 06 | 0 – Medium  | 0 – Industrial conditions  |  |  |
| <b>S</b> 07 | +1 – High   | +1 – High concentration R1 |  |  |
| S08         | 0 – Medium  | 0 – Industrial conditions  |  |  |



- Industrial conditions ratio:
  - R1/R2= 0.66
- High concentration R1:
  - R1/R2= 0.68 to 0.85



| Synthesis   | Temperature | Reactants ratio            |  |  |
|-------------|-------------|----------------------------|--|--|
| <b>S</b> 01 | 0 – Medium  | +1 – High concentration R1 |  |  |
| <b>S02</b>  | 0 – Medium  | 0 – Industrial conditions  |  |  |
| S03         | +1 – High   | 0 – Industrial conditions  |  |  |
| S04         | -1 – Low    | +1 – High concentration R1 |  |  |
| S05         | -1 – Low    | 0 – Industrial conditions  |  |  |
| S06         | 0 – Medium  | 0 – Industrial conditions  |  |  |
| S07         | +1 – High   | +1 – High concentration R1 |  |  |
| S08         | 0 – Medium  | 0 – Industrial conditions  |  |  |

### **Additional experiments**

• Spiking



- Water
- Dilution
  - Heptane
- ne
  - Aging
    - Minutes to hours



16

## RESULTS



La plateforme d'innovation collaborative Chimie-Environnement



### **HPLC QUANTIFICATION**

- 15 Samples from the syntheses.
- 19 Samples from additional experiments.





|         | Number  | Mean | Standard  | Expanded    |  |
|---------|---------|------|-----------|-------------|--|
|         | of data |      | Deviation | uncertainty |  |
| control | (n)     | (%)  | (%)       | (K=2) (%)   |  |
| R1+l1   | 52      | 1.53 | 0.23      | 0.45        |  |



#### **PROCESS MONITORING**





#### **DATA PRE-TREATMENT**



**PCA EXPLORATION** 

Axel'One



Axetone PLS ANALYSIS

#### Raman







10.10.10

Wavenumber (cm-1)

02

39 74 08



### **SPECTROSCOPIC QUANTIFICATION MODELS**



| Parameter            | Raman |      | MIR     |      | NIR  |      |
|----------------------|-------|------|---------|------|------|------|
| Set                  | Cal.  | Val. | Cal.    | Val. | Cal. | Val. |
| R <sup>2</sup>       | 0.96  | 0.93 | 0.97    | 0.95 | 0.98 | 0.96 |
| Slope                | 0.96  | 0.93 | 0.97    | 0.97 | 0.98 | 0.96 |
| Offset (%)           | 0.10  | 0.16 | 0.07    | 0.07 | 0.05 | 0.08 |
| RMSE (%)             | 0.20  | 0.27 | 0.17    | 0.22 | 0.14 | 0.20 |
| Expanded Uncertainty |       |      | <i></i> |      | 0.40 |      |
| (k=2) (%) (2xRMSEV)  | 0.54  |      | 0.44    |      | 0.40 |      |



#### **METHOD COMPARISON**





#### Conclusions

- Satisfactory models for the 3 spectroscopic techniques ranging from 0.7% to 4.5% of R1+I1.
- Raman, MIR, and NIR models equivalent to HPLC in monitoring the final stage of the synthesis step with an expanded uncertainty from 0.4 to 0.5%.
- Raman results are more dispersed. Raman implementation could be challenging as fluorescence and saturation were observed in some spectra.
- MIR and NIR were the most suitable options for in-line monitoring under the evaluated conditions.

#### Perspectives

- Using the evaluated techniques for in-line monitoring at a higher level (pilot or production) would help minimize risks and improve the representativity of the results.
- The quantification models could possibly be improved by recalibrating using industrial data, reconsidering the variables to keep inside the model, and doing external validation.
- To select a definite technique, other parameters like feasibility of implementation and costs should be considered.



#### **FOUNDING & PREMIUM MEMBERS**



#### **FUNDING MEMBERS**







GRANDLYON





INFO@AXEL-ONE.COM / WWW.AXEL-ONE.COM



## REFERENCES



La plateforme d'innovation collaborative Chimie-Environnement



- (1) An innovative and collaborative platform. Axel'One. https://axel-one.com/en/presentation/ (accessed 2023-03-17).
- (2) Axel'One PPI Innovative Processes Platform | Lyon area. Axel'One. https://axel-one.com/en/service-offering/hosting/axelone-ppi/ (accessed 2023-03-17).
- (3) R&D services, a large pool of tools and skills. Axel'One. https://axel-one.com/en/service-offering/r-and-d-services/ (accessed 2023-08-28).
- (4) Servier The Group in figures. Servier. https://servier.com/en/servier-group/servier-key-figures/ (accessed 2023-03-17).
- (5) Oril Industrie, Servier's centre of excellence in chemistry for the past 60 years! Servier. https://servier.com/en/newsroom/folders/oril-industrie-serviers-centre-of-excellence-in-chemistry-for-the-past-60-years/ (accessed 2023-03-17).
- (6) Robin, C. Directrice d'établissement.
- (7) Excellence in Analytical Chemistry. https://each.ut.ee/EACH/ (accessed 2023-08-28).
- (8) Hahn, J.; Edgar, T. F. Process Control. In *Kirk-Othmer Encyclopedia of Chemical Technology*; John Wiley & Sons, Inc., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; p 1618150307091522.a01.pub2. https://doi.org/10.1002/0471238961.1618150307091522.a01.pub2.
- (9) Metrohm Process Analytics Fournisseur de solutions pour l'analyse de procédures online, inline et atline. https://www.metrohm.com/fr\_fr/products/8/0005/80005340.html (accessed 2023-08-28).



- (10) Clayden et al. 2012 Organic Chemistry.Pdf. https://www.chemcome.com/wp-content/uploads/2020/11/Organic-Chemistry-by-Jonathan-Clayden-Nick-Greeves-Stuart-Warren-z-lib.org\_.pdf (accessed 2023-06-22).
- (11) Advanced Organic Chemistry Part A: Structure and Mechanisms Part B: Reactions and Synthesis. Chem. Int. 2002, 24 (5), 28–29. https://doi.org/10.1515/ci.2002.24.5.28b.
- (12) Cha10sec213.Pdf. https://media.iupac.org/publications/analytical\_compendium/Cha10sec213.pdf (accessed 2023-03-24).
- (13) Larkin, P. Introduction. In Infrared and Raman Spectroscopy; Elsevier, 2011; pp 1–5. https://doi.org/10.1016/B978-0-12-386984-5.10001-1.
- (14) Jablonski-Diagram.Pdf. https://www.med.unc.edu/microscopy/wp-content/uploads/sites/742/2018/06/jablonskidiagram.pdf (accessed 2023-08-28).
- (15) Analytical Vibrational Spectroscopy NIR, IR, and Raman. Spectroscopy **2011**, 26 (10).
- (16) Theory of Attenuated Total Reflectance. JASCO. https://jascoinc.com/learning-center/theory/spectroscopy-1/attenuatedtotal-reflectance/ (accessed 2023-08-28).
- (17) Barone, V. Anharmonic Vibrational Properties by a Fully Automated Second-Order Perturbative Approach. J. Chem. Phys. 2004, 122 (1), 014108. https://doi.org/10.1063/1.1824881.
- (18) Azeotrope.info. http://azeotrope.info/ (accessed 2023-07-28).