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Exploring the gain of remote sensing data collections at (sub)centimetric scale for a better 

determination of biotic and abiotic stress symptoms in contrasting agro-ecological practices

 Use of non-destructive and high-throughput optical spectroscopic measurements giving access to 

biochemical traits highlighting photosynthetic status, water resources, nutrient and biomass allocation
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Exploring the gain of remote sensing data collections at (sub)centimetric scale for a better 

determination of biotic and abiotic stress symptoms in contrasting agro-ecological practices

 Goal to further determine the type and intensity of pests and diseases from leaf discoloration, water 

stress, nutrient loss and biomass change
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Our study targets peach and apricot tree orchards for two agro-ecological applications: inputs

management and variety breeding.

Spectrocopic data in the visible to short-wave infrared range (VSWIR: 0.4-2.5 µm) is efficient to quantify biochemical traits from 

statistical and physical methods for different vegetation physiological conditions (Wang et al., 2023 ; Gaubert et al., 2023).
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Explore relationships between optical data, biochemical traits and pest/disease scores to 

derive the phytosanitary status at leaf scale
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Our study targets peach and apricot tree orchards for two agro-ecological applications: inputs

management and variety breeding.

Spectrocopic data in the visible to short-wave infrared range (VSWIR: 0.4-2.5 µm) is efficient to quantify biochemical traits from 

statistical and physical methods for different vegetation physiological conditions (Wang et al., 2023 ; Gaubert et al., 2023).

 Interest for the mid- to long-wave infrared spectral domain (MWIR/LWIR: 2.5-15 µm) ?
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Explore relationships between optical data, biochemical traits and pest/disease scores to 

derive the phytosanitary status at leaf scale
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Little available data because tough requirements in the 

measurement protocol :

- cooling the detector with liquid nitrogen

- purging the integrating sphere of water vapor and carbon 

dioxide with nitrogen gas

Choice of the substitution method to measure optical properties



Our study targets peach and apricot tree orchards for two agro-ecological applications: inputs

management and variety breeding.

Spectrocopic data in the visible to short-wave infrared range (VSWIR: 0.4-2.5 µm) is efficient to quantify biochemical traits from 

statistical and physical methods for different vegetation physiological conditions (Wang et al., 2023 ; Gaubert et al., 2023).

 From statistical to physical methods, which are the most effective ?

 Is it possible to estimate pest and disease scores ?

Objectives
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Explore relationships between optical data, biochemical traits and pest/disease scores to 

derive the phytosanitary status at leaf scale

Physical

(model-driven):

- generalizable

- parameterization

Statistical

(data-driven):

- fast

- datasets

Biotic and abiotic factors can be unmixed from 

the spectral features ?



Our study targets peach and apricot tree orchards for two agro-ecological applications: inputs

management and variety breeding.

For statistical methods, building relevant datasets is very demanding in terms of human and instrumental resources and is 

costly for laboratory analysis because a large number of samples is needed.

 Can we find a compromise by working at shoot scale instead of leaf scale ?

The first work presented relies on raw spectra and a diversified set of leaf observations.
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Explore relationships between optical data, biochemical traits and pest/disease scores to 

derive the phytosanitary status at leaf scale



Sites
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Two INRAE experimental stations:

INRAE Domaine Saint Paul (Avignon)

• Peach orchard, one variety (Nectarlove cv),

• Conventional treatment with fertilization 

trials since 3 years and irrigation trials 

(ECOPECHE network)

INRAE Domaine Amarine (Bellegarde)

• Apricot orchard, 150 varieties replicated in 5 

blocks (CORE COLLECTION network),

• Low phytosanitary inputs



Materials
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Samplings:

• 5 dates (from June to October 2023), top and bottom tree crown part, 4 leaves from one shoot,

• For apricot: 5 varieties (including 1 monitored),

• For peach: 50%/100% irrigation (1 date) & 0N/180N fertilization trials (all dates)

Optical properties:

• Leaf scale: directional-hemispherical reflectance and transmittance of leaf adaxial side in the range 0.4-

15µm (Perkin and Bruker spectroradiometers with integrating spheres)

Biochemical traits:

• Leaf scale: chlorophyll meter SPAD leaf-clip measurements, water and dry matter content,

• Shoot scale: pigments (phenolics compounds, chlorophylls and carotenoids) and total nitrogen contents

Pest/disease scores:

• Leaf scale: chlorosis, leafhopper attacks, shot hole and rust diseases

155 samples at leaf scale and 31 samples at shoot scale



Leaf observation scales
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Raw data
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Raw data, scale has been enlarged compared to 0.4-2.5µm range, parasitic gas effects due to the substitution method error



 Average of 12 SPAD measurements to get a value at shoot scale (4 leaves/shoot, 3 measurements/leaf)

 Application of the regression for each SPAD value to get total chlorophylls and nitrogen at leaf scale

SPAD calibration to upscale shoot scale data to leaf scale
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Choice of a linear regression per month

SPAD – total chlorophylls content SPAD – total nitrogen content

Choice of a homographic regression per species (in green)
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Estimation methods
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Approach Method and parameterization Spectral 

range

Data

Statistical PLSR (scikit-learn, train/test: 70/30%, 5 cross-validation, 

averaged metrics over 10 repetitions, relevant spectral 

bands from Variable Importance in the Projection)

0.4 – 2.5 µm

2.5 – 15 µm

0.4 – 15 µm

All biochemical traits 

and pest/disease

scores

Physical Iterative inversion of the leaf radiative transfer

PROSPECT-D (Powell optimization algorithm, optimized

selection of spectral sub-ranges per trait)

0.4 – 2.5 µm Pigments, water and 

dry matter content

Biochemical 

traits + one 

structural trait (N)

Directional-

hemispherical 

optical properties

@Ustin and Jaquemoud

PROSPECT model



Results with the statistical approach
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Biochemical traits: VSWIR > FULL RANGE > MWIR/LWIR (cf. all metrics, water: VSWIR ~ FULL RANGE), 

water/dry matter > nitrogen > chlorophylls (cf. nRMSE), excellent results in VSWIR for leaf scale traits and 

also nitrogen from shoot scale, slightly less better for chlorophylls from shoot scale but still acceptable

Pest/disease scores: no convincing results (RMSE > 10%, nRMSE values around twice those of 

biochemical traits), no particular spectral sensitivity, chlorosis & shot holes > rust (cf. nRMSE)

R2: coefficient of determination, RMSE: Root Mean Square Error, 

NRMSE: normalized RMSE, LV: optimal number of latent variables

Spectral 

range
0,4 - 2,5 µm (VSWIR) 2,5 - 15 µm (MWIR/LWIR) 0,4 - 15 µm (FULL RANGE)

Original 

scale
Data R2 RMSE

nRMSE 

(%)
LV R2 RMSE

nRMSE 

(%)
LV R2 RMSE

nRMSE 

(%)
LV

LEAF
Water 

(g/cm2)
0.75 0.0012 11 6 0.6 0.0015 14 7 0.76 0.0011 11 7

LEAF
Dry matter 

(g/cm2)
0.78 0.0009 11 7 0.63 0.0012 14 3 0.72 0.001 11 3

SHOOT
Chlorophylls 

(µg/cm2)
0.59 5.6 16 11 0.2 7.9 22 5 0.54 6 17 7

SHOOT Nitrogen (%) 0.75 0.22 13 13 0.4 0.32 20 6 0.65 0.26 15 10

LEAF

Chlorosis 

frequency 

(%)

0.53 16 24 5 0.22 17 26 4 0.38 15 24 6

LEAF
Rust intensity 

(%)
0.25 10 29 4 0.19 10 29 5 0.17 10 28 5

LEAF
Shot hole 

intensity (%)
0.36 18 23 8 0.34 18 23 2 0.3 19 24 2
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Results with the physical approach
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Biochemical traits: water > chlorophylls > dry matter (cf. nRMSE), excellent results at leaf scale, slightly less 

better for chlorophylls from shoot scale but still acceptable (cf. RMSE)

Comparison with statistical approach in the VSWIR range: physical > statistical for water and the opposite 

for dry matter, more or less equivalent for chlorophylls (cf. all metrics)

R2: coefficient of determination, RMSE: Root Mean Square Error, 

NRMSE: normalized RMSE, LV: optimal number of latent variables

Spectral 

range
0,4 - 2,5 µm (VSWIR)

Original 

scale
Data R2 RMSE

nRMSE 

(%)

Spectral range in nm 

(R: reflectance, T: transmittance)

LEAF
Water 

(g/cm2)
0.85 0.001 10 1100 – 1800 (T)

LEAF
Dry matter 

(g/cm2)
0.71 0.002 17 1800 – 2400 (R + T)

SHOOT
Chlorophylls 

(µg/cm2)
0.75 6.29 15 580 – 720 (R)



Conclusions and perspectives

 From raw spectra, good results are globally obtained to derive biochemical traits, but not for pest/disease 

scores.

 Using the VSWIR domain leads to better performances than MWIR/LWIR domains alone, the later being 

mostly useful only for water and dry matter content estimations (as shown in literature for other species).

 Results are mitigated in terms of performances between physical and statistical approach depending on 

the biochemical trait.

 The use of SPAD measurements at shoot scale is promising to get estimations of chlorophylls and 

nitrogen at leaf scale relying on built-up regressions.

Prospects:  

 Use spectral preprocessing (SNV, CR, CWT, derivatives, etc.), select more specific spectral intervals,

 Study variable correlations (PCA) and estimate pest/disease scores from biochemical traits,

 Test variable joint estimations with multi-output PLSR,

 Test hybrid approaches relying on the training of machine learning algorithms on simulated datasets from 

physical models,

 Building of a new dataset in 2024 in agreement with future UAV-borne acquisitions over the orchards
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Thanks you

21karine.adeline@onera.fr

• Projet ANR CANOP “Remotely sensed leaf biochemistry intra-individual variability in orchard tree 

CANOPies for agroecology” (2023-2026, grant: ANR-22-CE04-0002)

• Website of the project and future data access: https://remotetree.sedoo.fr/canop

https://remotetree.sedoo.fr/canop

