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Abstract
There is a resurgence in the use of Classical Least Squares (CLS) models primarily due to their 
interpretability. When used with spectroscopic systems that follow the Lambert-Beer law CLS 
models follow naturally from first principles. Unfortunately, CLS models typically do not have 
the predictive ability of inverse least squares (ILS) models such as Partial Least Squares (PLS) 
regression: the prediction error of CLS models is usually higher, and often notably so. This is 
largely due to non-idealities in the data of interest along with the presence of unaccounted for 
minor components, e.g. scatter and baseline variations. PLS models handle these situations by 
adding components to the model that keep the resulting regression vector orthogonal to the 
non-ideal variations. In this work we examine a method for developing CLS models with 
predictive properties competitive with ILS formulations. This is done by using the CLS model 
“half-residuals” to develop pre-filters with Generalized Least Squares Weighting (GLSW) or 
External Parameter Orthogonalization (EPO). The result is calibration models that have 
chemically meaningful estimates of the pure component spectra, interpretable factors for non-
idealities and minor components and good predictive ability. Gray CLS models are demonstrated 
with several NIR data sets and their performance is shown comparable to PLS models.
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Classical Least Squares
• CLS often used to develop spectroscopic calibration models
• The CLS assumes the data can be modeled as

𝑿 = 𝑪𝑺𝑻 +𝑬
where:

• 𝑿 𝑀×𝑁" is the measured spectral response
• 𝑺 𝑁"×𝐾 is a matrix of pure spectral responses,
• 𝑪 𝑀×𝐾 is a matrix of concentrations and
• 𝑬 𝑀×𝑁" is noise or an error matrix.
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Using the CLS Model
• If 𝑺 is known, the ,𝑪 can be estimated from
• !𝑪 = 𝑿𝑺(𝑺𝑻𝑺)"#

• If 𝑺 is not known, it can be estimated from a (properly 
designed) calibration data set
• (𝑺 = 𝑪$𝑪 "#𝑪𝑻𝑿

• This is often the best way to estimate 𝑺
• Models 𝑺 in the relevant sample matrix
• Temperature, pressure, scattering effects, etc. 
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CLS Spectral Residuals
• Given -𝑺 there are two ways to get spectral residuals
• Conventional 𝑹𝒄, estimate ,𝑪 as above then
• 𝑹𝒄 = 𝑿 − !𝑪(𝑺$

• Half residuals 𝑹𝒉, use original 𝑪 instead of ,𝑪
• 𝑹𝒉 = 𝑿 − 𝑪(𝑺$

• Note that 𝑹𝒄 is orthogonal to -𝑺, whereas 𝑹𝒉 is not
• This will be important later!
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Main Problem with CLS
• As originally formulated, typically not competitive with PLS 

and other Inverse Least Squares (ILS) approaches on 
prediction error

• Can’t use with un-quantified unknown components
• Factor based methods (PLS, PCR) compensate for non-

idealities by going beyond the number of known 
components 

• With CLS you’re stuck. ??
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Clutter Orthogonalization Filters
• Typically used as preprocessing in PLS or other ILS models
• Mitigate effect of large variations in spectra not related to 

property of interest
• Consider two popular orthogonalization filters here
• External Parameter Orthogonalization (EPO)
• Generalized Least Squares Weighting (GLSW)
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EPO Filter
• Given a matrix 𝒁which represents extraneous variation 

(matrix effects, clutter), decompose 𝒁 as
• 𝒁 = 𝑼𝑺𝑽𝑻

• The number of filter factors kmust be specified, then
• 𝑭𝒆𝒑𝒐 = 𝑰 − 𝑽𝒌𝑽𝒌𝑻

• 𝑭𝒆𝒑𝒐 is applied to 𝑿 before calibration (and during 
prediction), and removes variations in the first k
dimensions represented in 𝒁

• Equivalent to Extended Mixture Model (EMM)
9
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GLSW Filter
• Similar to EPO filter except it shrinks dimensions rather 

than completely eliminating them
• Starting from the decomposition of 𝒁 above then
• 𝑭𝒈𝒍𝒔𝒘 = 𝑽𝑫"𝟏𝑽𝑻

• Where the diagonal elements of 𝑫 are calculated as

• 𝑑0 =
1!
"

2"
+ 1

• Where 𝑠𝑖 is the ith diagonal element of 𝑺 and 𝑔 is a tune-
able parameter which controls the shrinkage
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Comparison of EPO & GLSW
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Combining CLS & Filters
• Residuals from CLS models can be used as an estimate of 

the clutter, 𝒁. However,
• Filter based on 𝑹𝒄 has no effect as it is orthogonal to (𝑺. 
• 𝑹𝒉, on the other hand, contains information about clutter not

orthogonal to (𝑺. 

• Filter based on 𝑹𝒉 mitigates clutter not orthogonal to -𝑺
that would otherwise lead to additional error in ,𝑪. 
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The CLS Gray Model
• We refer to this combination of a CLS model with a filter 

based on the half residuals 𝑹𝒉 as a “gray model” 
• Incorporates aspects of both CLS and ILS models. 
• Based on a first principles model, the CLS “white” part 
• Includes tunable empirical part, EPO or GLSW filter “black” part 
• This model has a single adjustable parameter (k or 𝑔)

• GLS generally outperforms EPO, so only GLS results shown
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NIR Data Sets
• Grain protein from Tormod Naes/Tomas Isaakson (CGL)

• Casein, glucose, lactate and moisture, 231 samples (split 153/78), 
117 wavelengths, full 3 component mixture design, 

• Styrene-butadiene from Dupont/Chuck Miller (SBR) 
• Styrene, cis-, trans- and 1,2-butadiene, 70 samples (split 60/10), 

141 wavelengths. 

• Hydrocarbon mixture from Willem Windig (WW)
• Butanol, dichloromethane, methanol, dichloropropane and 

acetone, 140 samples (split 93/47), 700 wavelengths, full design. 
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CLS Predictions for CGL
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CGL Model Error – RMSEC/CV/P
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CLS-GLS Predictions for CGL
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RMSECV = 0.48564
RMSEP = 0.47525

RMSEC = 0.45742
RMSECV = 0.55611
RMSEP = 0.58482

g = 0.0001
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Diagnostic Information
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SBR Data Results
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Choosing Meta-parameters
• Usual aspects of cross-validation apply 
• Watch for overfit, i.e. when fit error (RMSEC) is 

much lower than prediction error (RMSECV)
• Plot Overfit vs. Cross-validation error

• Ratio RMSECV/RMSEC versus RMSECV
• In units of predicted variable
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RMSECV/C for CGL & SBR
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Conclusions
• EPO and GLSW filters can be used to improve CLS model 

predictive performance – Gray Models
• Key is use of “half-residuals” 𝑹𝒉
• One adjustable parameter (k or 𝑔)

• Resulting models competitive with PLS in predictive ability
• Model selection criteria as usual
• Overfit (RMSECV/C) vs. Prediction (RMSECV) very useful!

• Main advantages interpretability, explain-ability 
• Available in PLS_Toolbox/Solo 9.3
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