24th HelioSPIR association / French group for chemometrics (GFC), June 13-15 2023 in Montpellier Agropolis

How to properly analyse spectra

Harald Martens, bio-chemometrician

Prof. emerit., DEPARTMENT OF ENGINEERING CYBERNETICS, Norw. U. of Sci. & Technol. NTNU, Trondheim Norway

IDLETECHS AS (<u>www.idletechs.com</u>) Trondheim Norway

Norwegian University of Science and Technology

24th HelioSPIR association / French group for chemometrics (GFC), June 13-15 2023 in Montpellier Agropolis

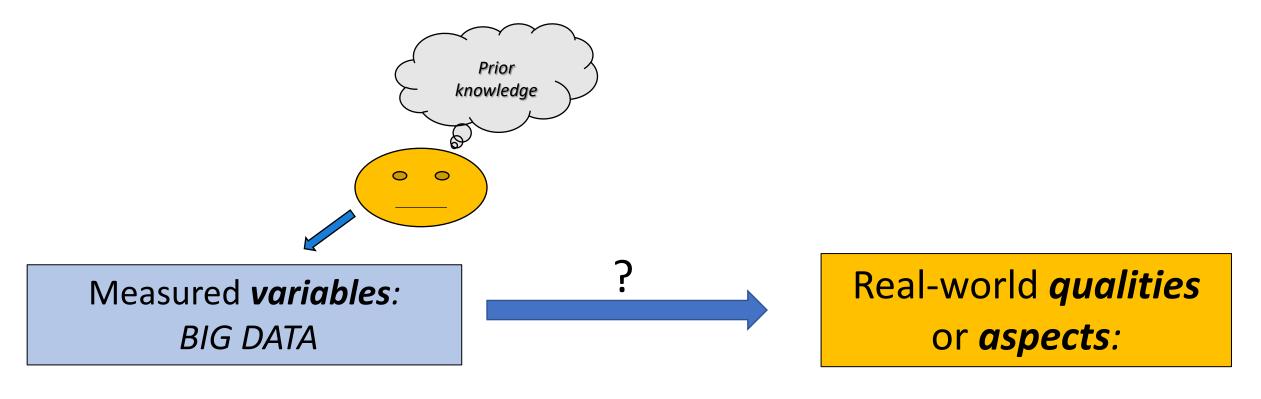
How to properly analyse spectra My perspective after 50 years: A way to analyze spectra

Harald Martens, bio-chemometrician

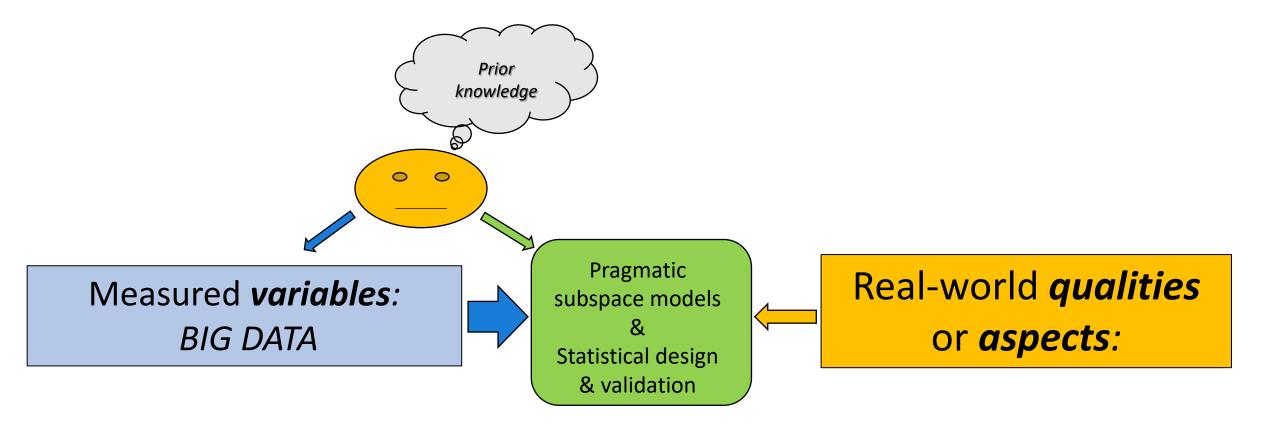
Prof. emerit., DEPARTMENT OF ENGINEERING CYBERNETICS, Norw. U. of Sci. & Technol. NTNU, Trondheim Norway

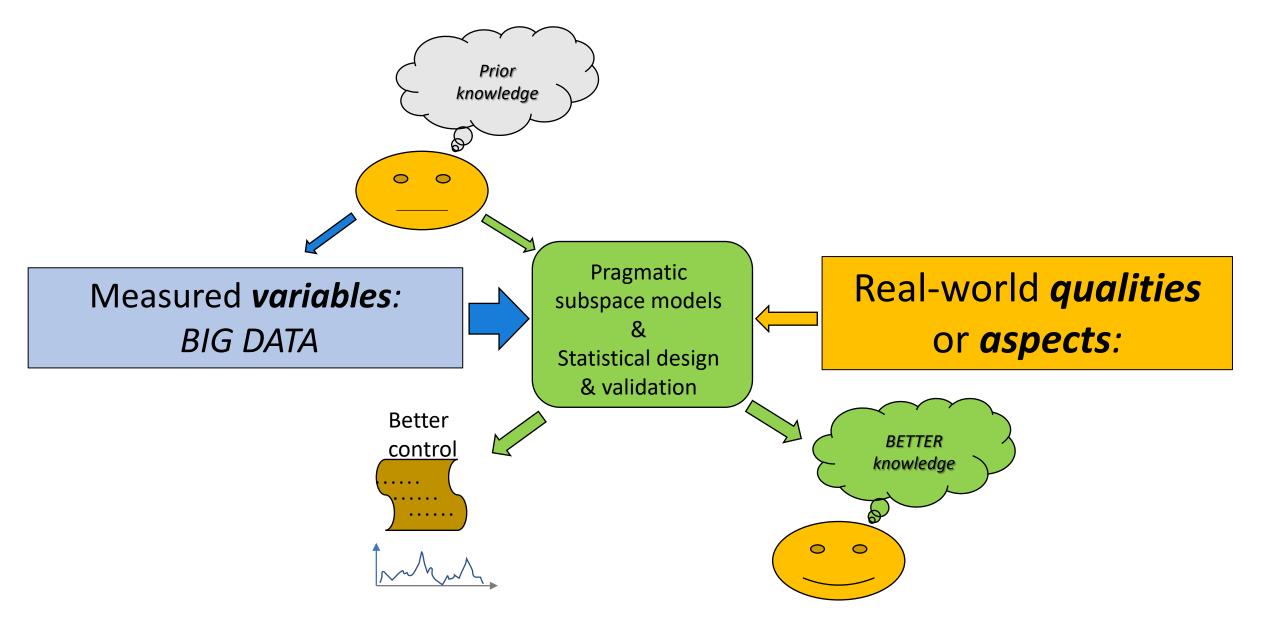
NTTNU Norwegian University of Science and Technology

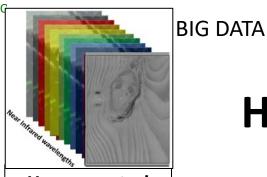
IDLETECHS AS (<u>www.idletechs.com</u>) Trondheim Norway



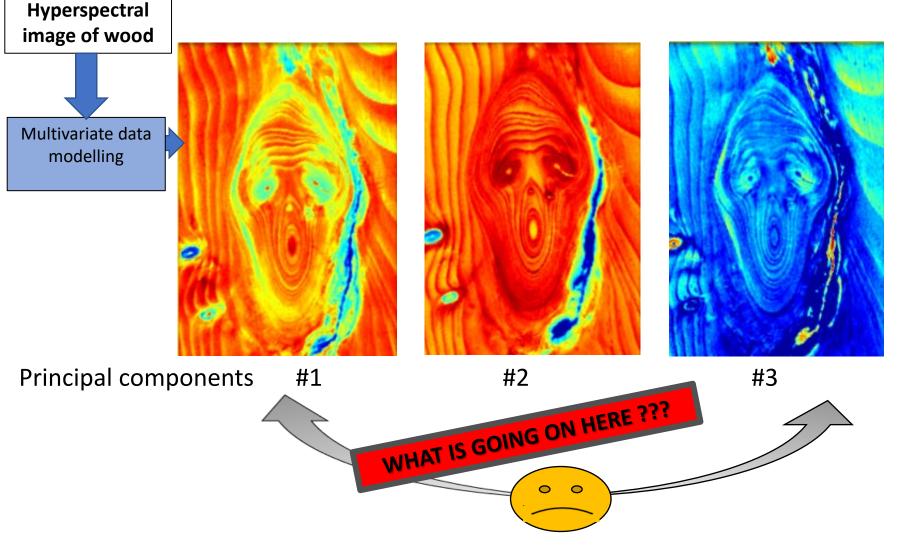
Predicting something from many other things

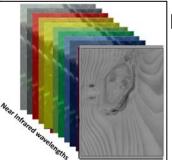






Hybrid Chemometric Subspace Modelling

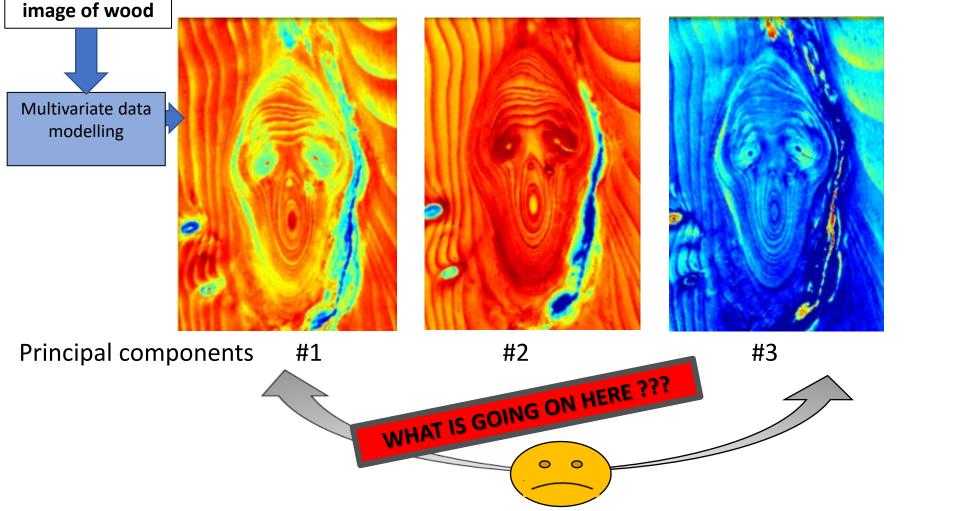




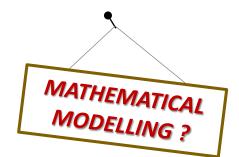
Hyperspectral

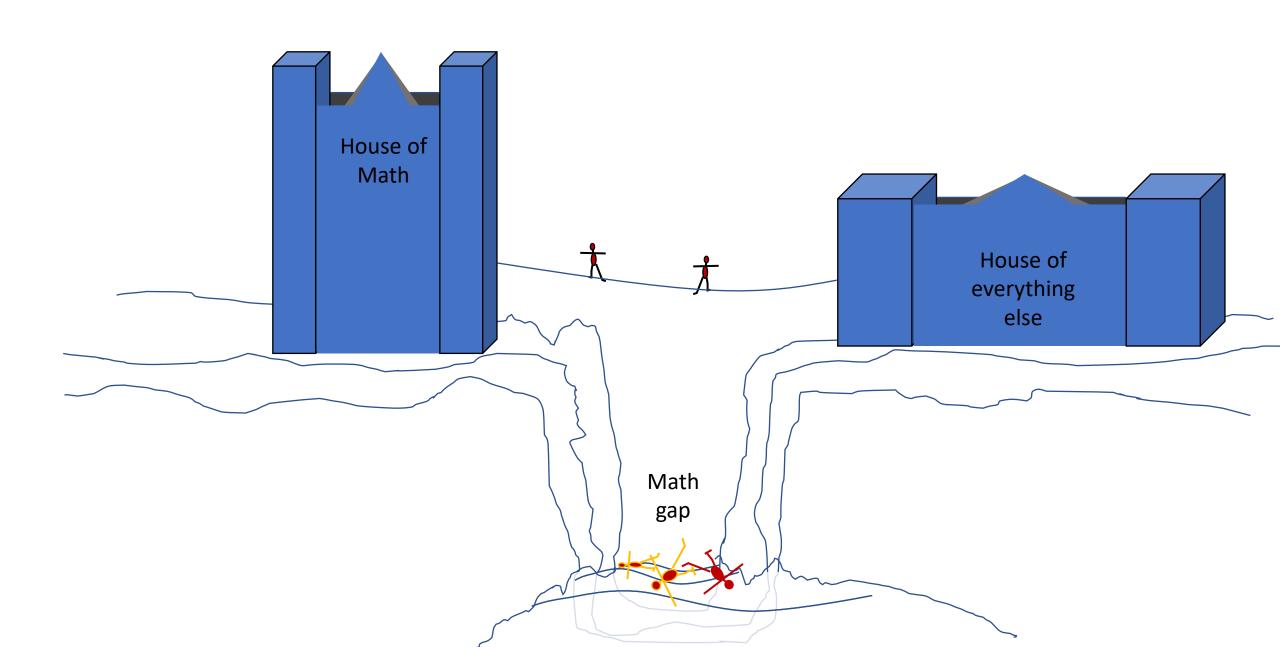
BIG DATA

Hybrid Chemometric Subspace Modelling

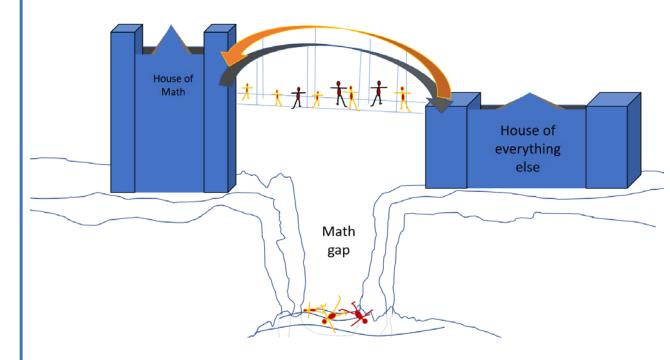


Edvard Munch: SCREAM



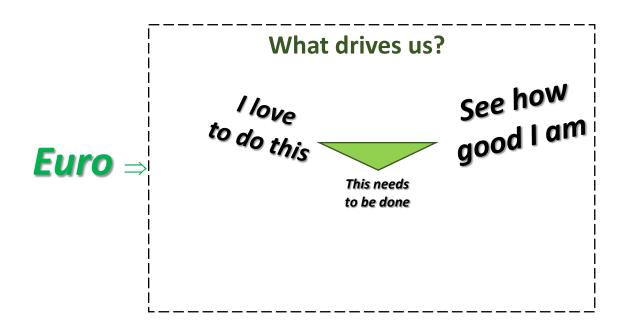


Math gap



A way to analyze spectra

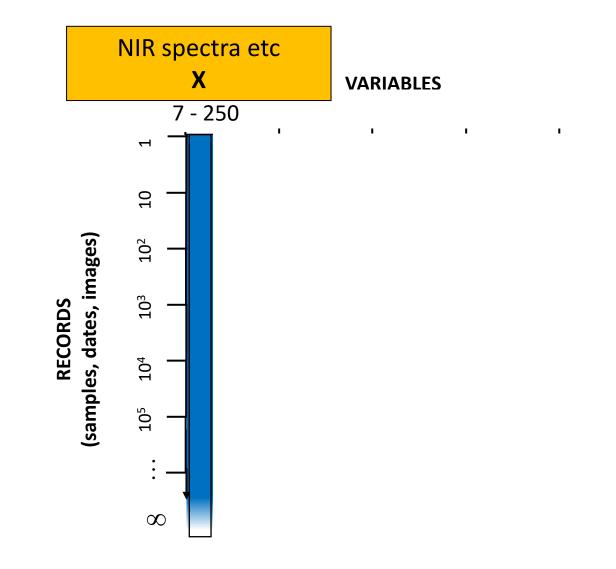
Science in general :

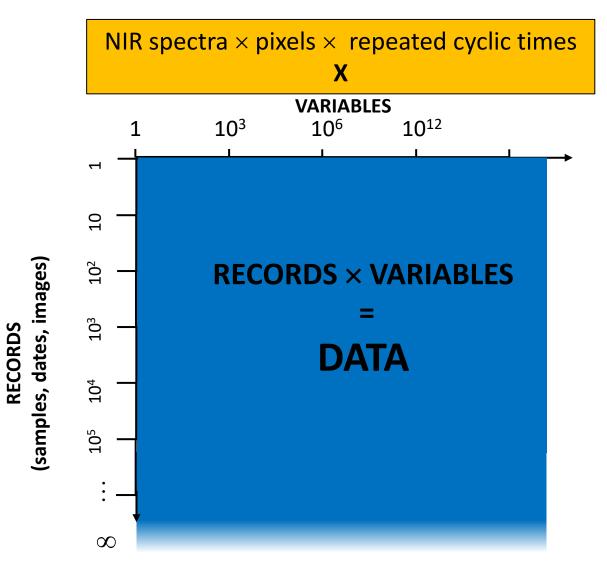


A way to analyze spectra

NIR & Chemometrics:

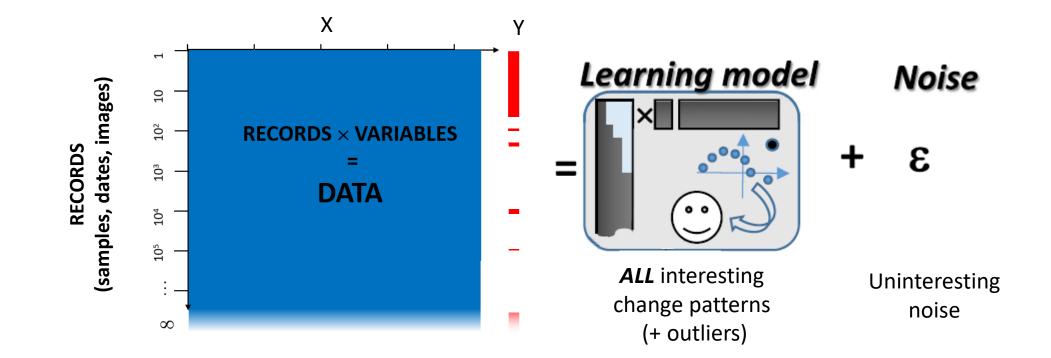




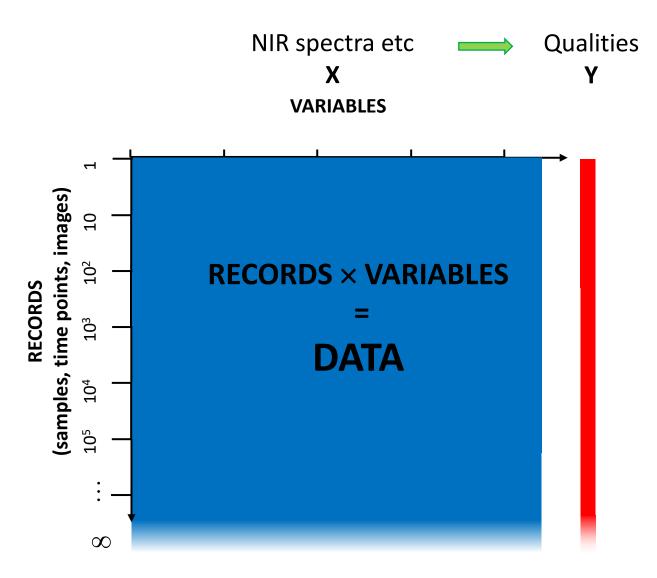


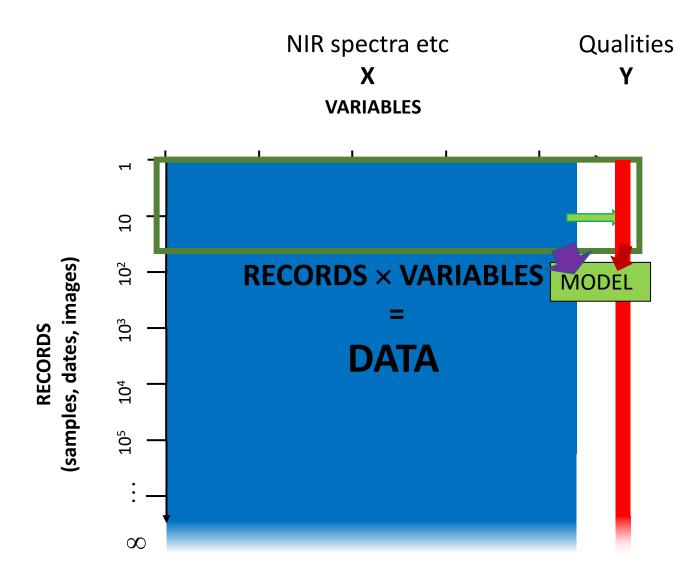
Open

OTFP: Automatic modelling of continuous high-dimensional data streams

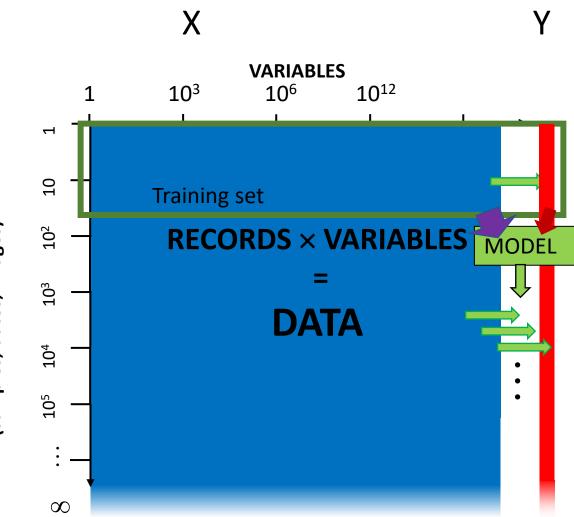


On-The-Fly-Processing software for e.g. thermal – and hyperspectral video in industry (Vitale et al. 2017)



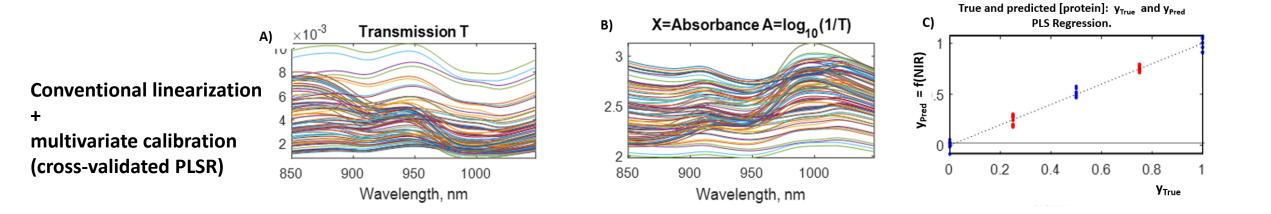


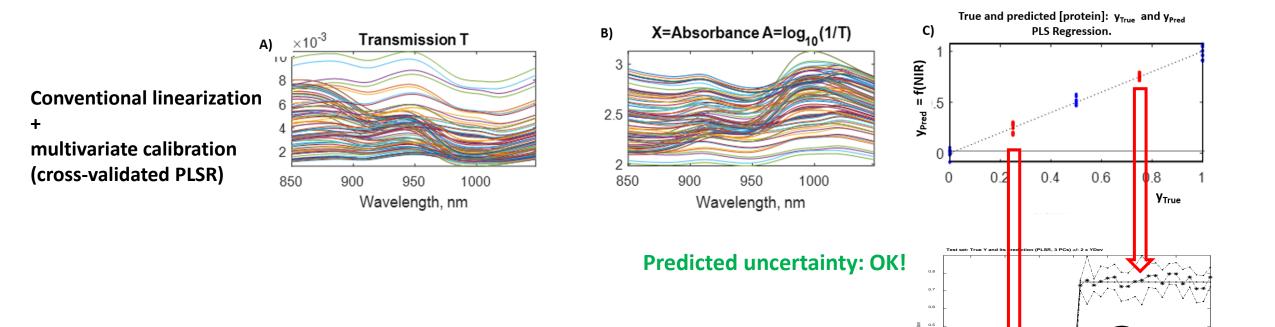
Open



RECORDS (samples, dates, images)

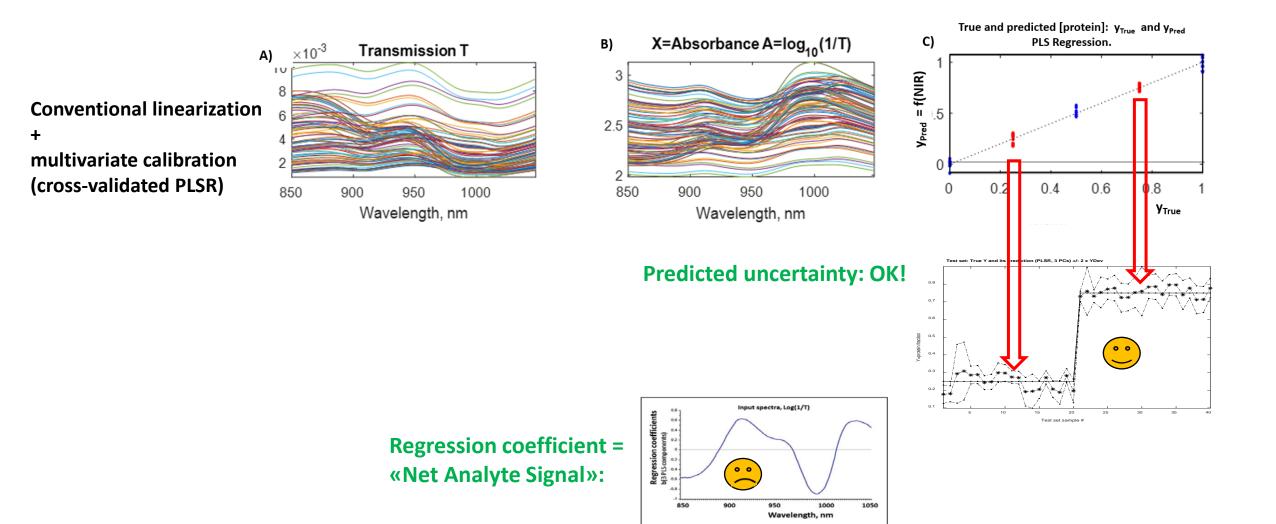
Open

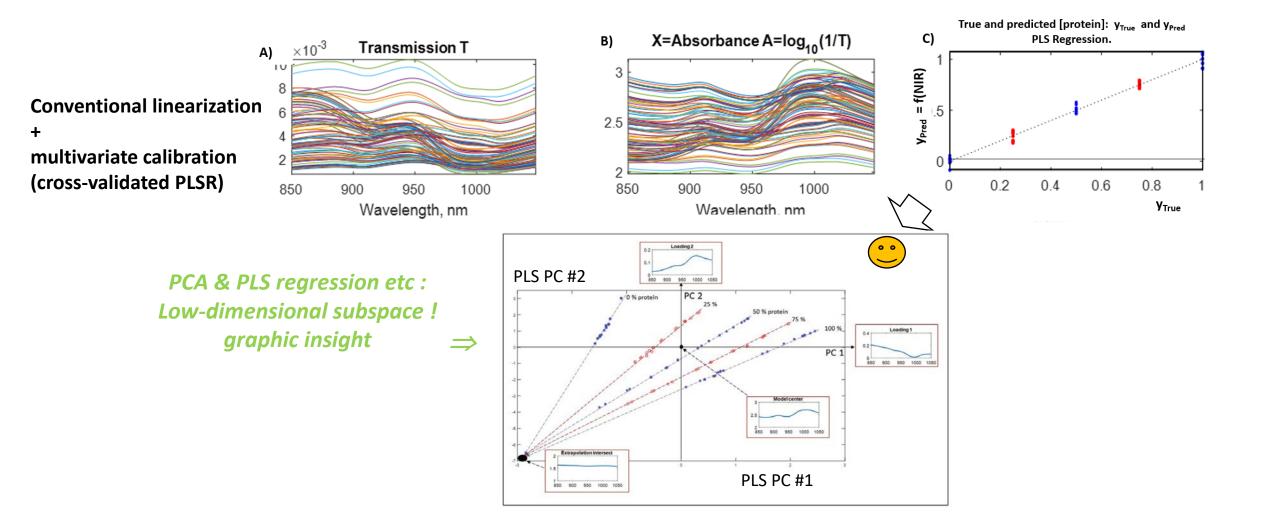


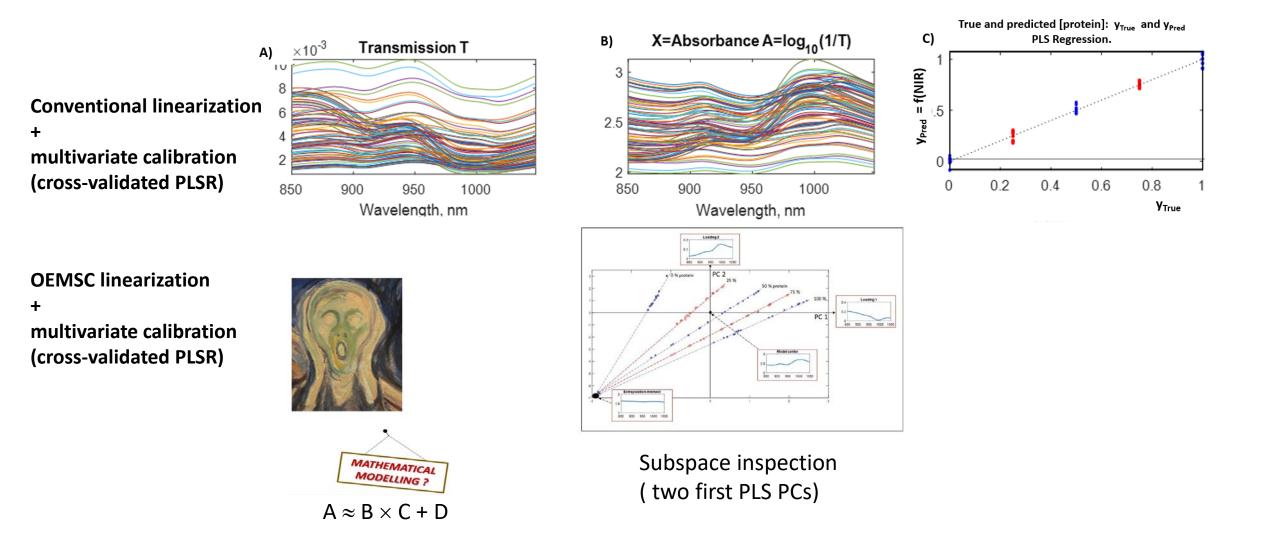


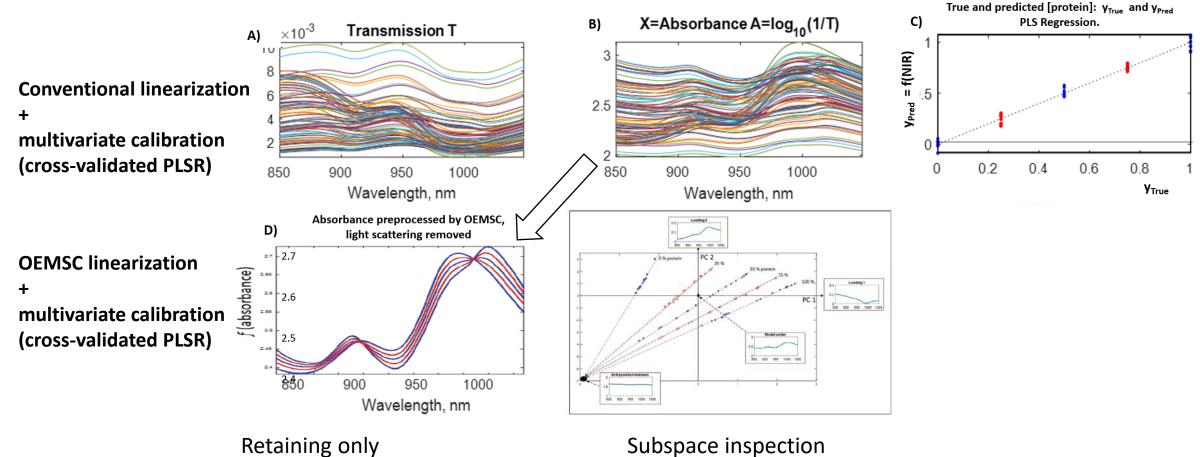
0.4

Test set sample #



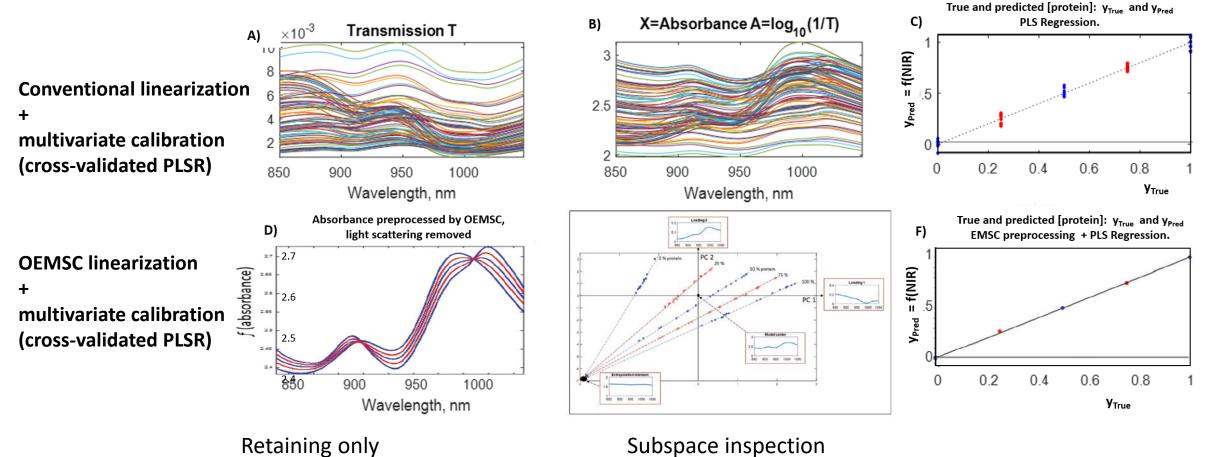






chemical info

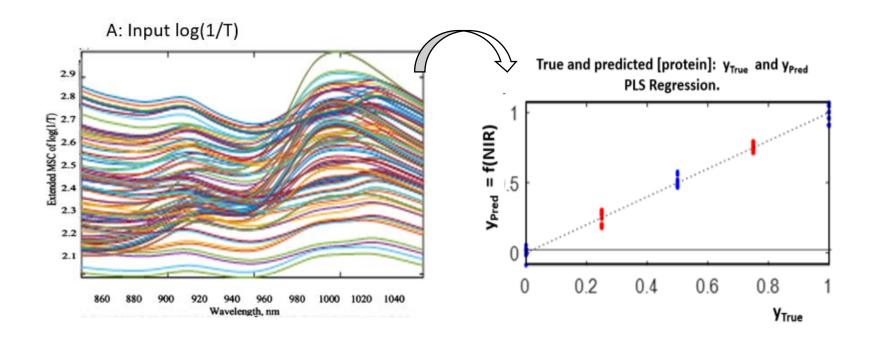
Subspace inspection (two first PLS PCs)

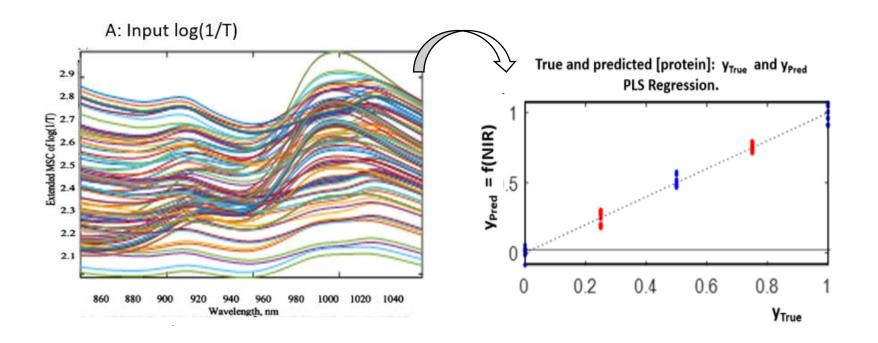


(two first PLS PCs)

chemical info

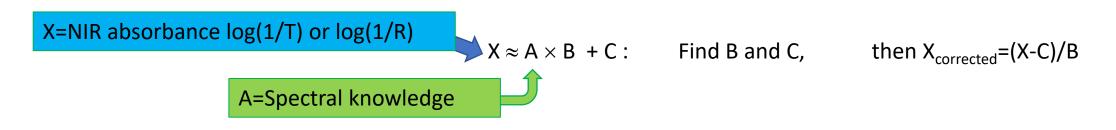
Open

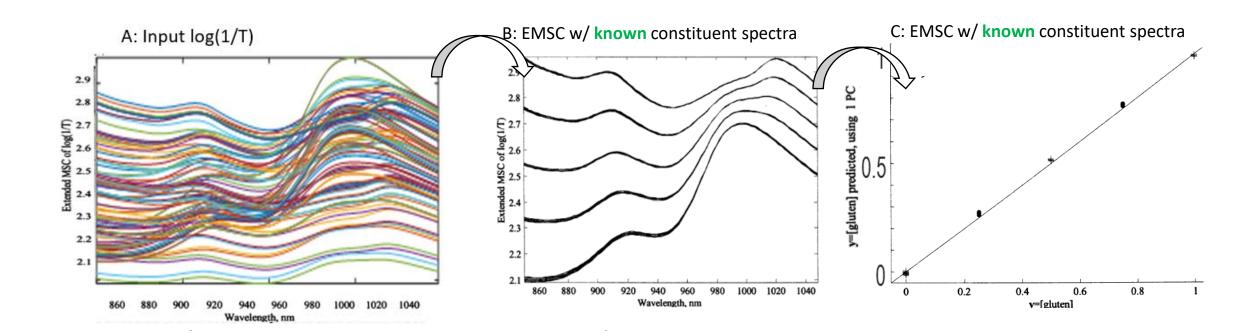




EMSC: Extended Multiplicative Signal Correction

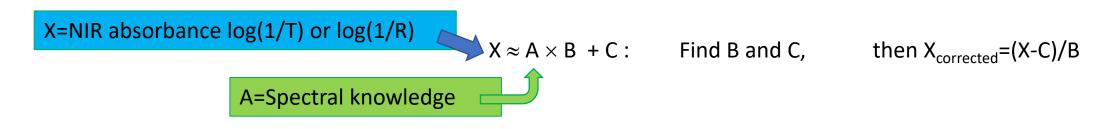
Simple linear model, using high-school algebra:

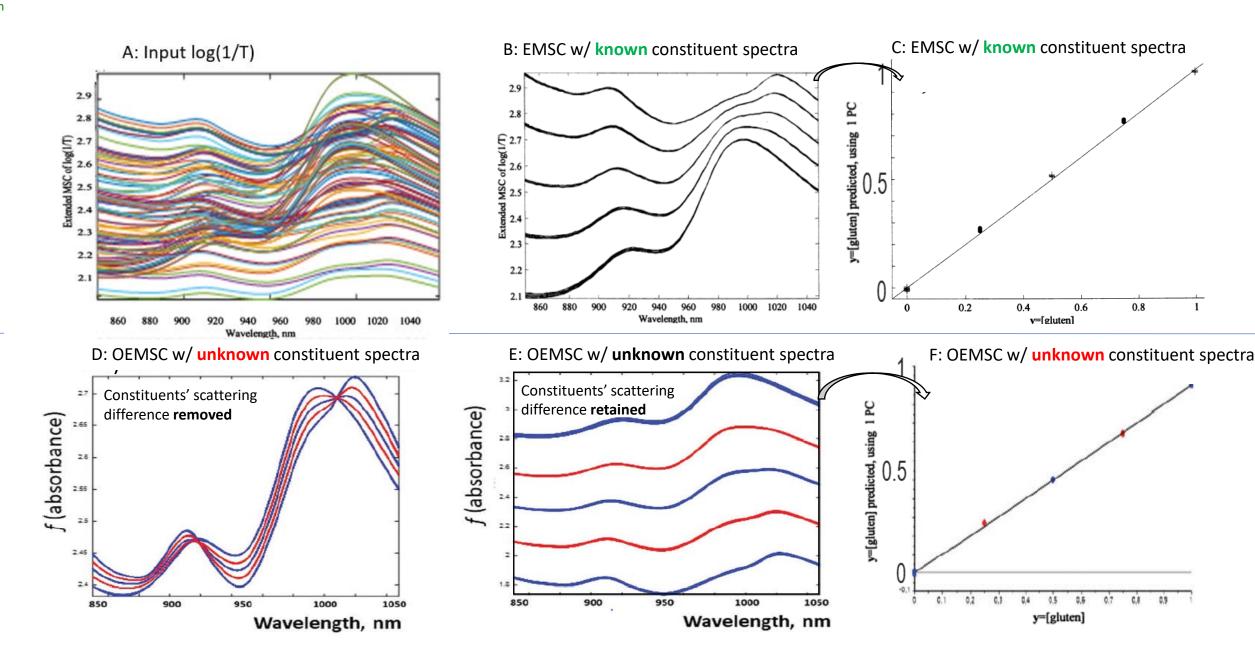




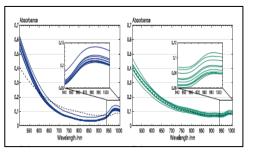
EMSC: Extended Multiplicative Signal Correction

Simple linear model, using high-school algebra:

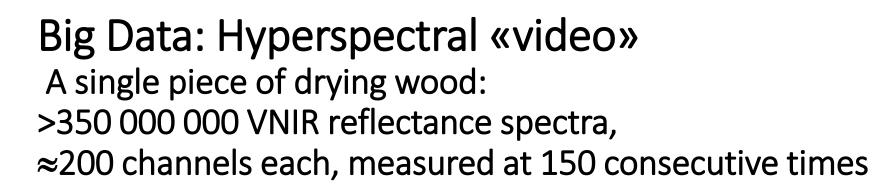


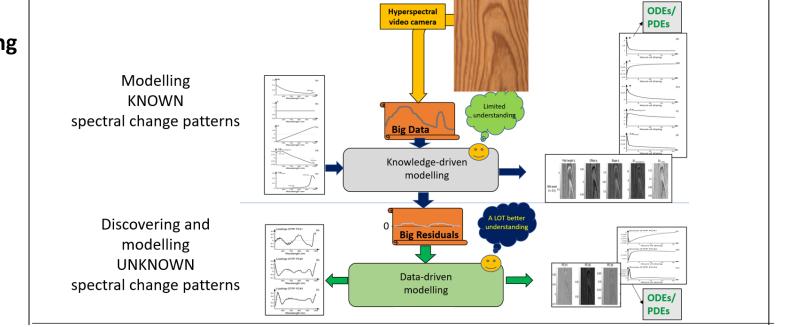


VNIR; 400-1000 nm

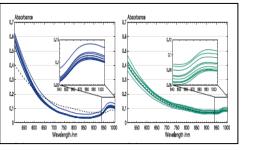


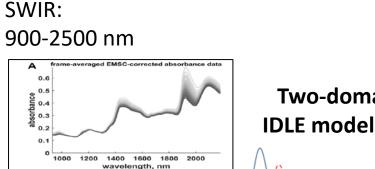
EMSC modelling KNOWN and UNKNOWN physics & chemistry:



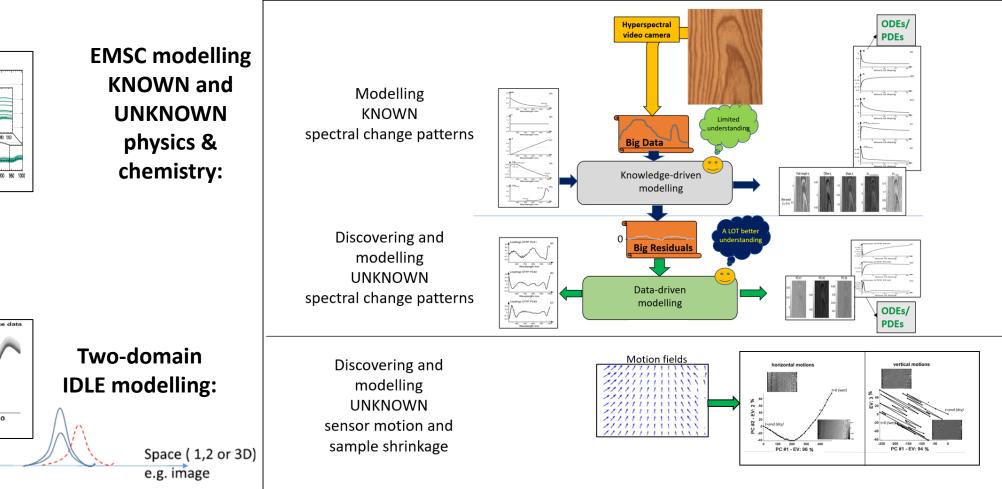


VNIR: 400-1000 nm



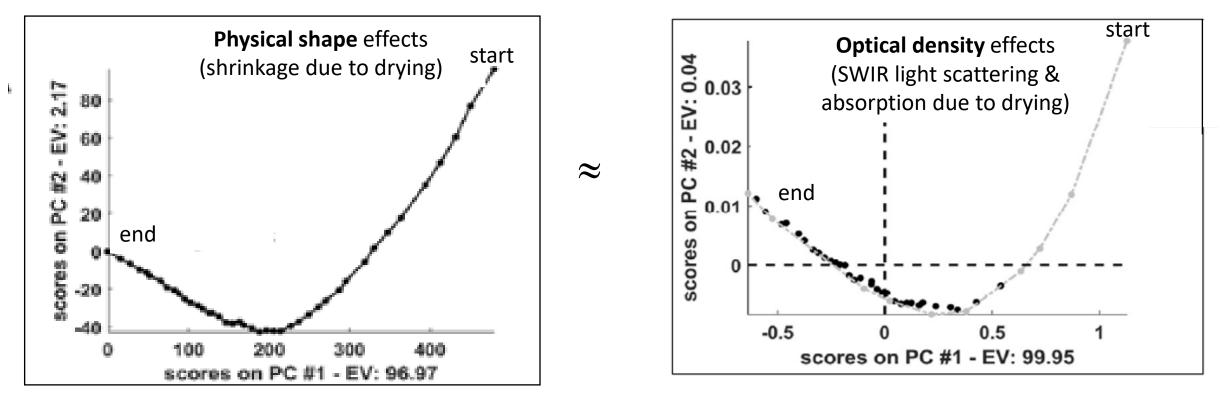


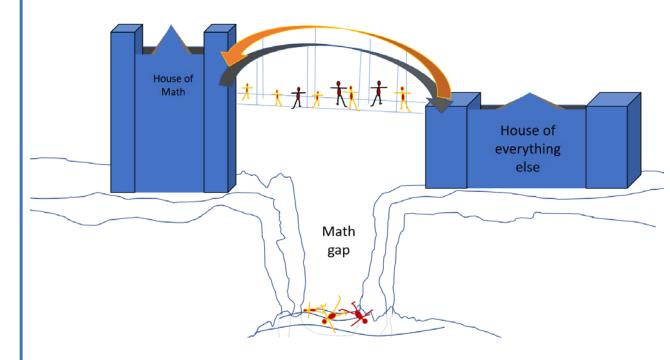
Big Data: Hyperspectral «video» A single piece of drying wood: >350 000 000 VNIR reflectance spectra, ≈200 channels each, measured at 150 consecutive times



Drying wood in SWIR (900-2500 nm)

Similar two phase-kinetics for physical shrinkage and chemical composition change





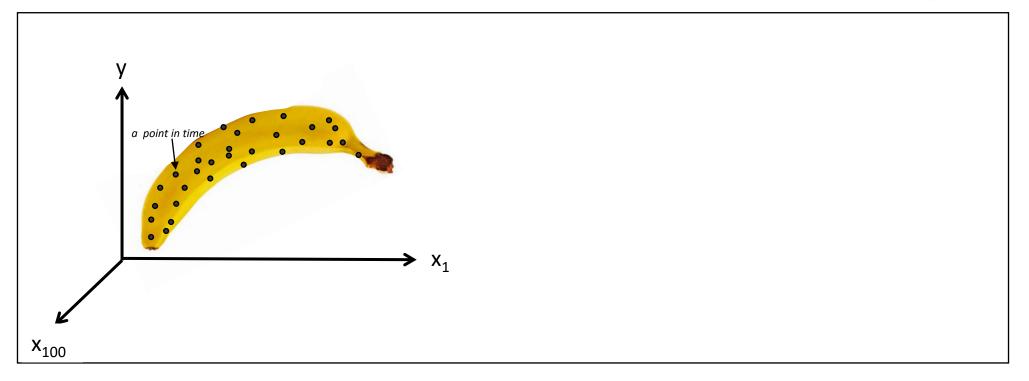
Norwegian University of Science and Technology

Thank you!

harald.martens@ntnu.no

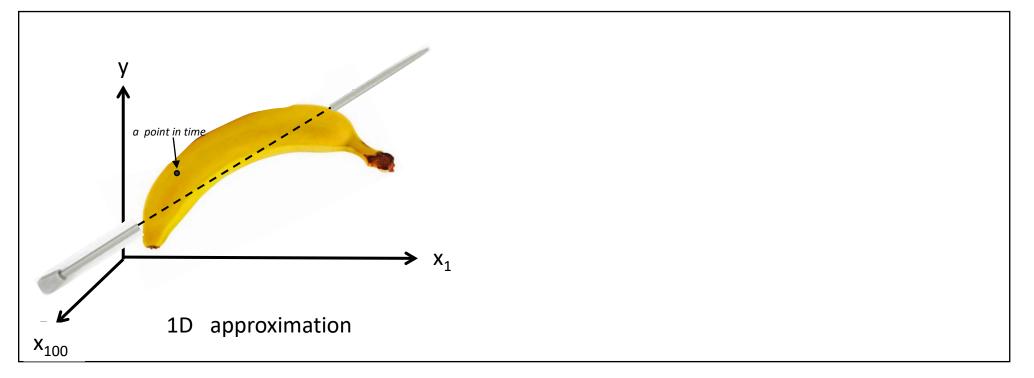
PLSR etc uses a linear method, but can often handle non-linear responses automatically

Many data points in a high-dimensional space e.g. 100 wavelengths ($y, x_1, x_2, ..., x_{100}$), happen to form a banana-shaped cloud :



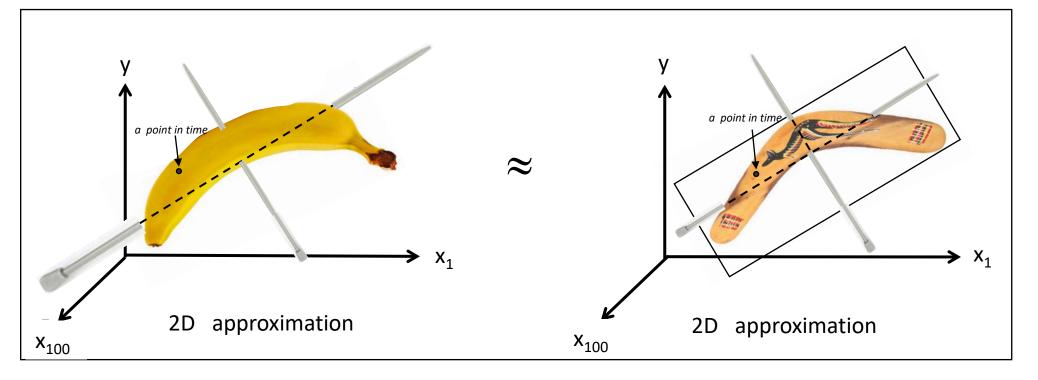
PLSR etc uses a linear method, but can often handle non-linear responses automatically

Many data points in a high-dimensional space e.g. 100 wavelengths ($y, x_1, x_2, ..., x_{100}$), happen to form a banana-shaped cloud :



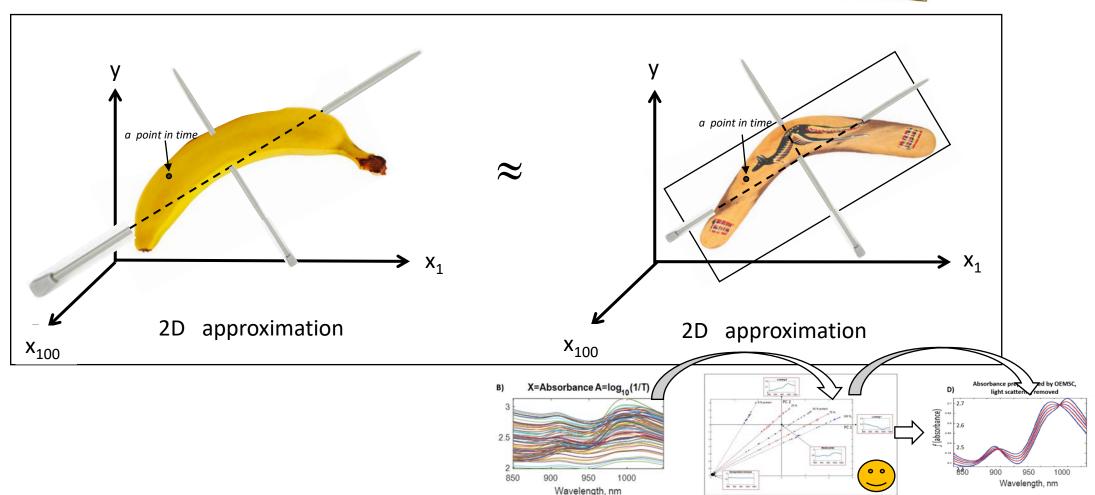
PLSR etc uses a linear method, but can often handle non-linear responses automatically

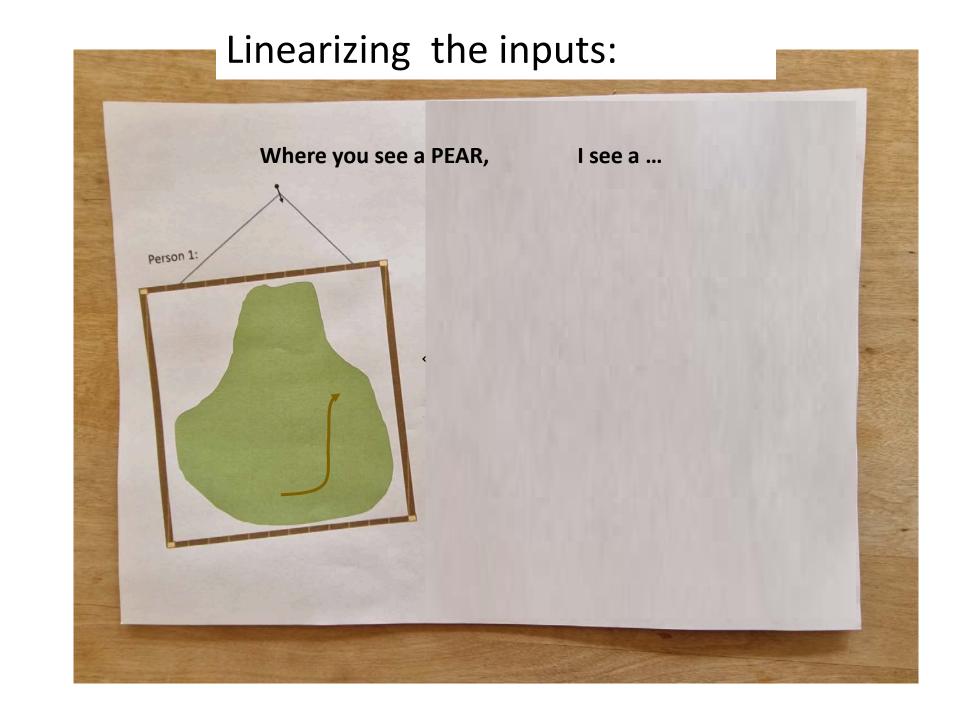
Many data points in a high-dimensional space e.g. 100 wavelengths (y, $x_1, x_2, ..., x_{100}$), happen to form a banana-shaped cloud :

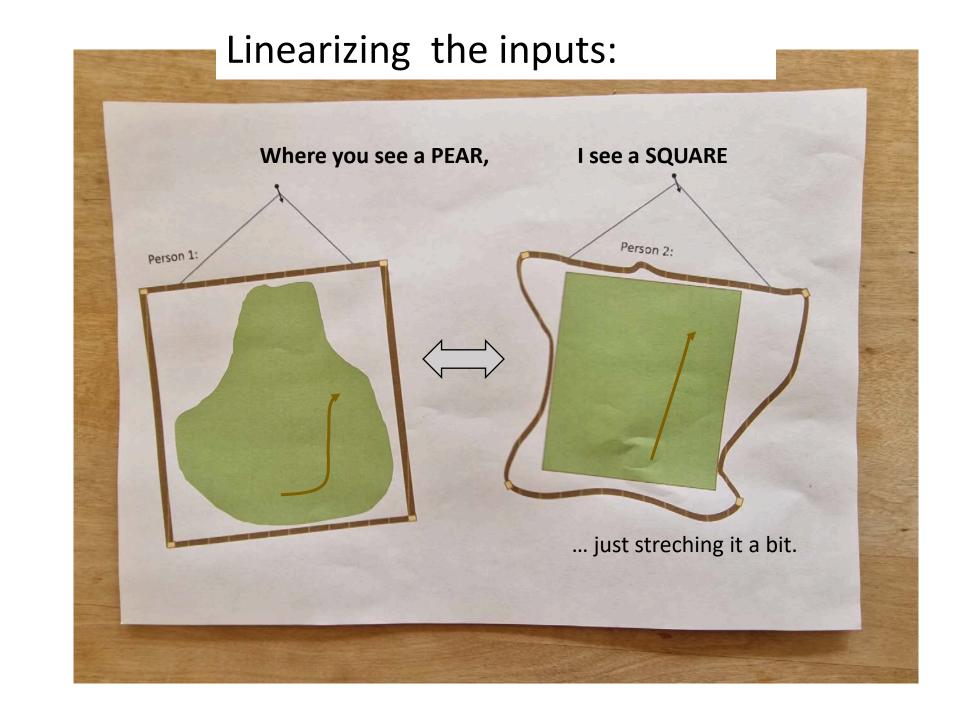


PLSR etc uses a linear method, but can often handle non-linear responses automatically

Many data points in a high-dimensional space e.g. 100 wavelengths (y, $x_1, x_2, ..., x_{100}$), happen to form a banana-shaped cloud :

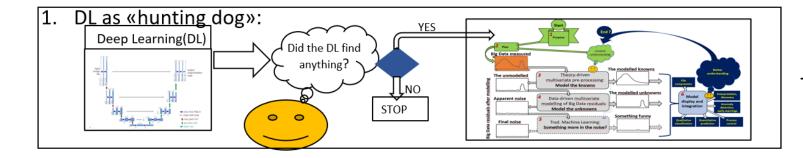






Open

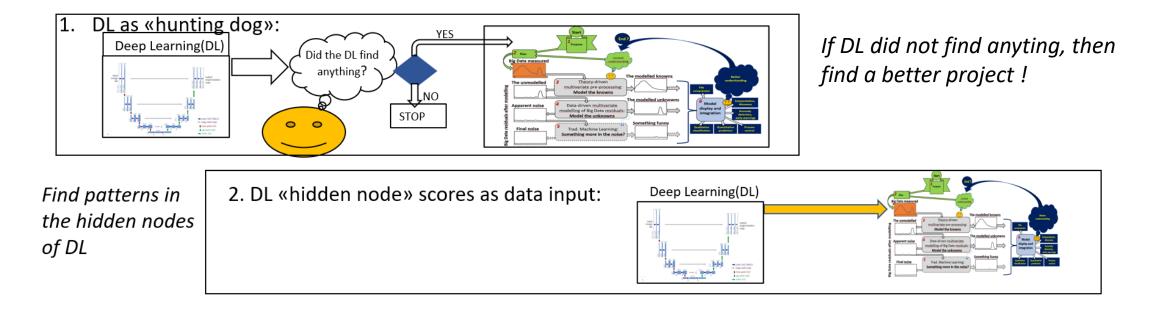
Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)



If DL did not find anyting, then find a better project !

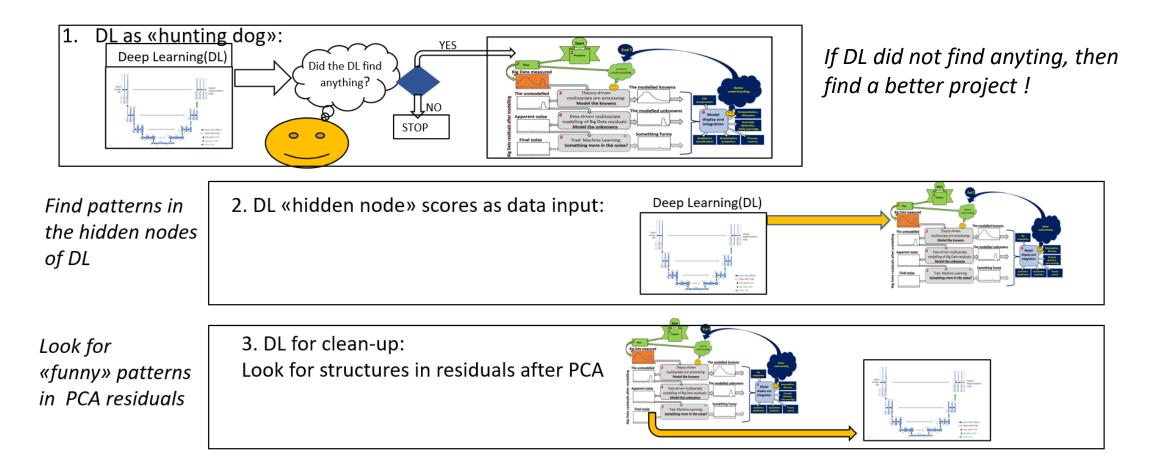
Open

Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)



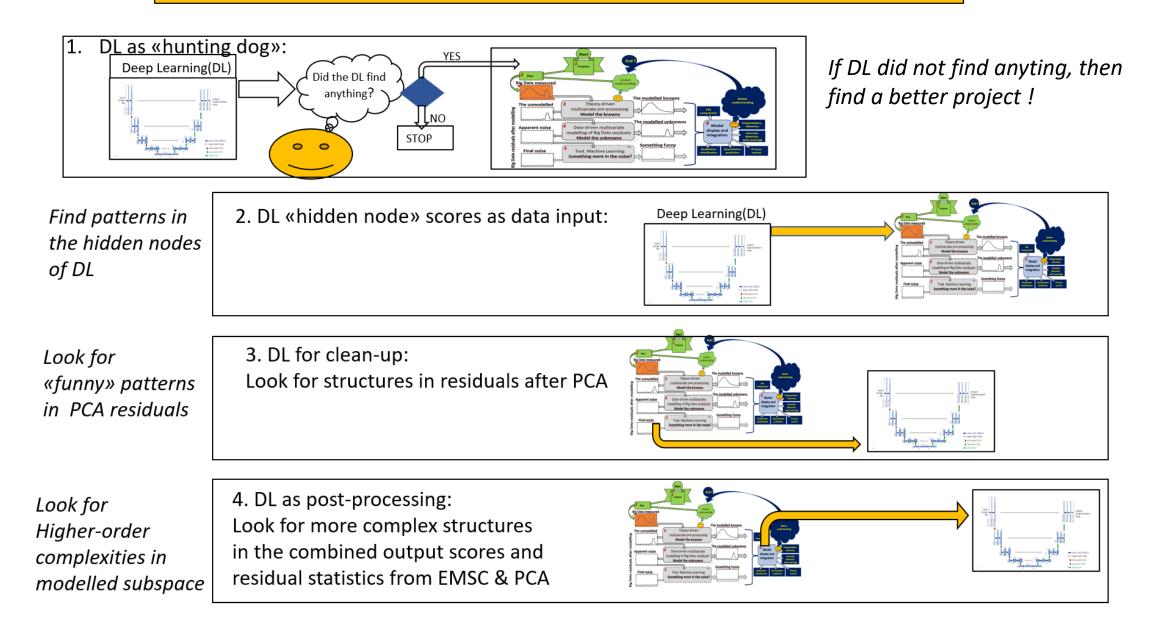
Open

Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)

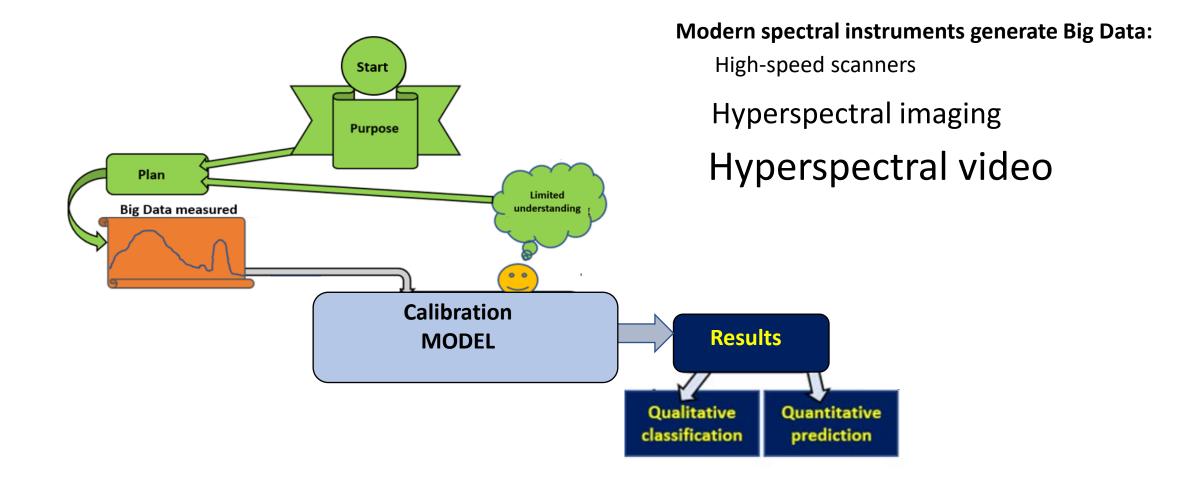


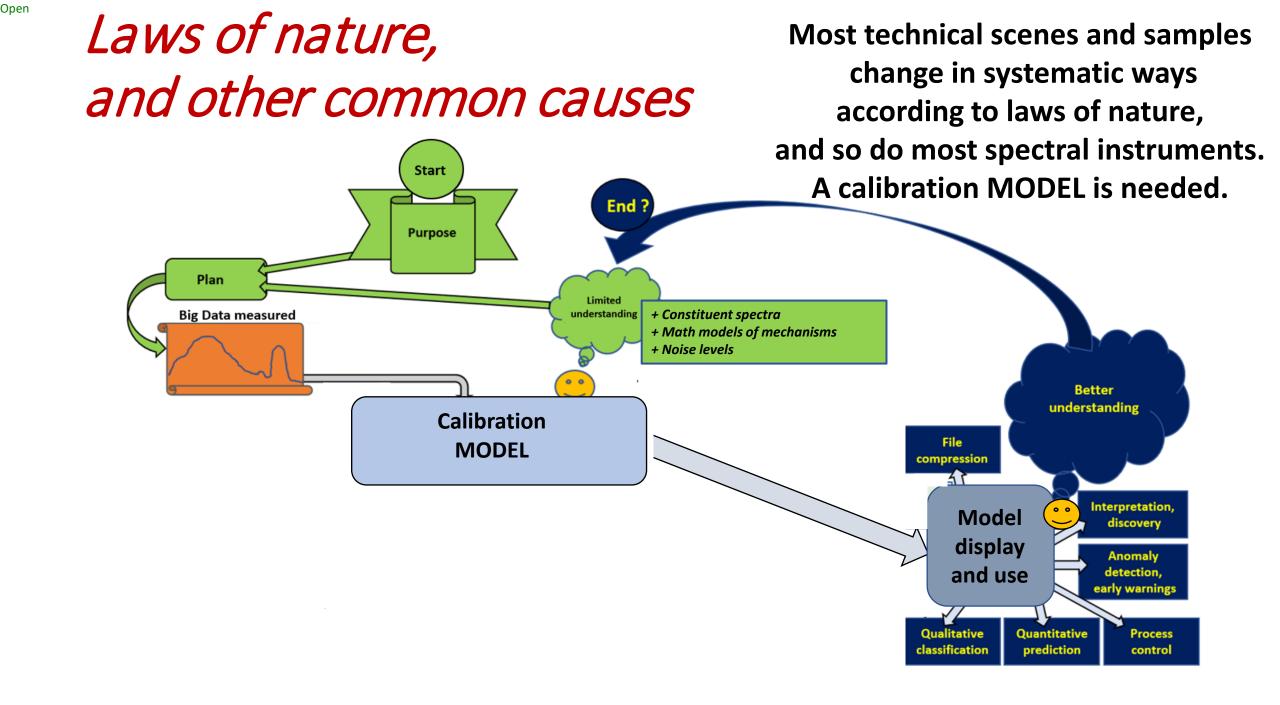
Open

Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)



BIG DATA in Science and Technology (S&T)

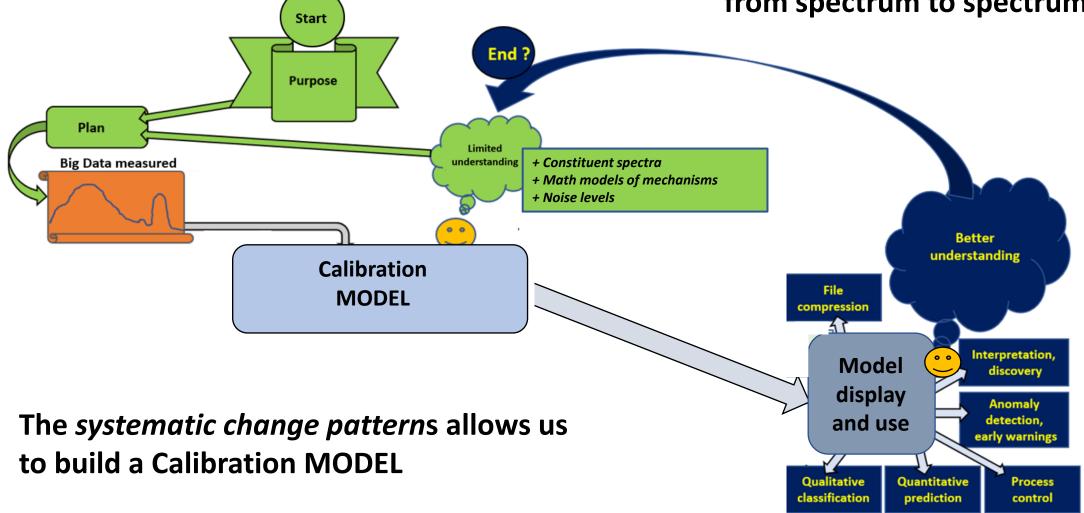




Spectra from common causes show patterns

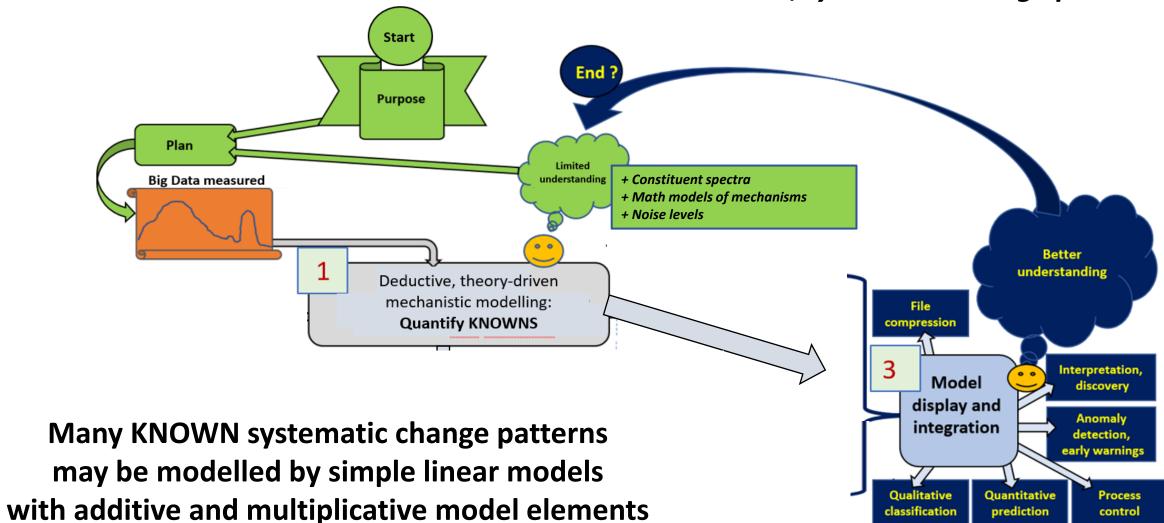
Open

Common causes generate systematic change patterns from spectrum to spectrum



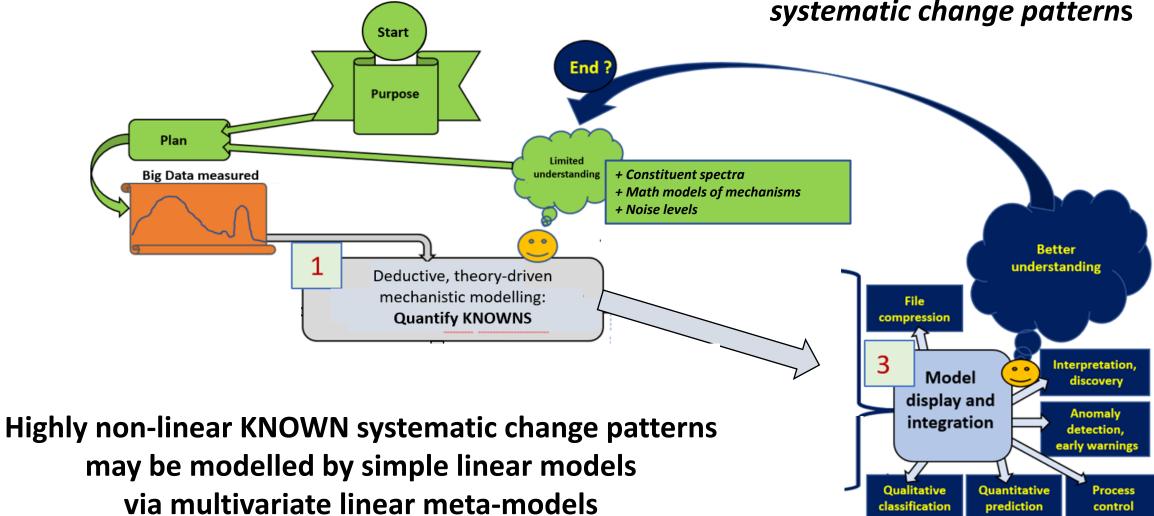
Some causes are expected

Many KNOWN causes give NICE, systematic change patterns



Some causes are expected

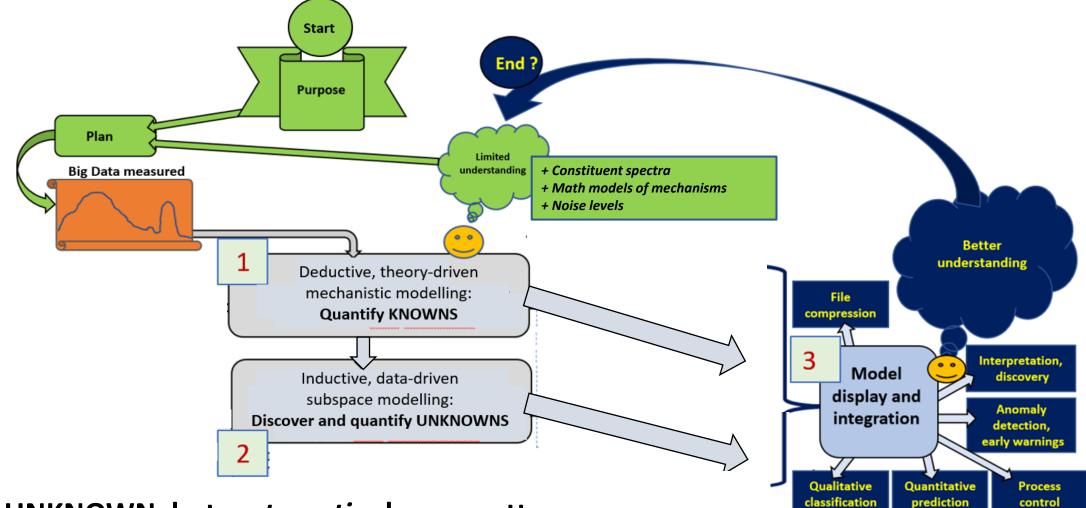
Some KNOWN causes give NOT SO NICE, but still systematic change patterns



based on computer simulation studies

Other causes are unexpected

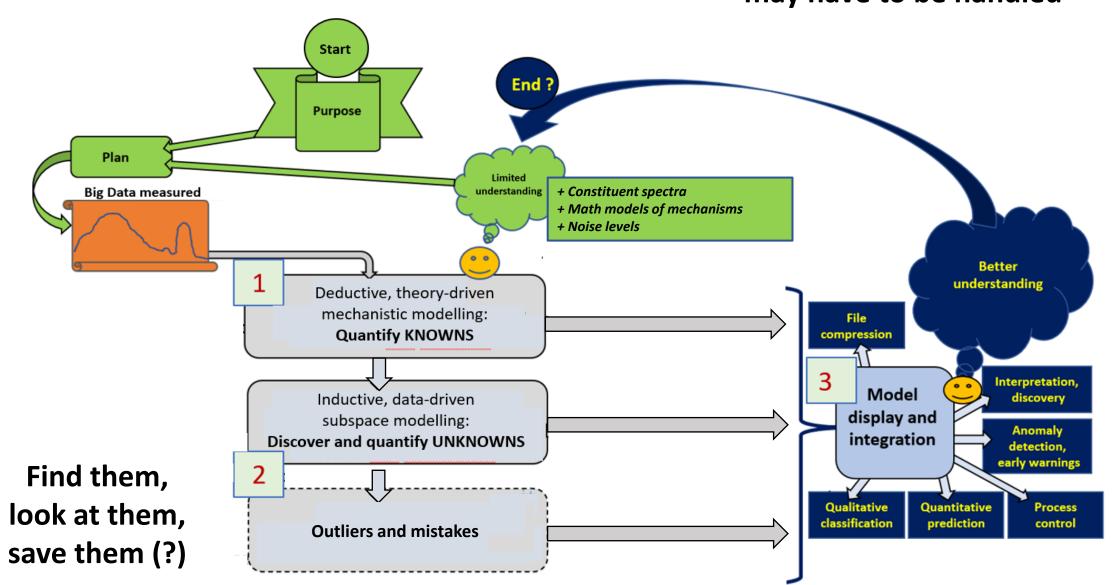
But UNKNOWN causes can still give NICE, systematic change patterns



Many UNKNOWN, but *systematic* change patterns may be modelled by purely additive elements

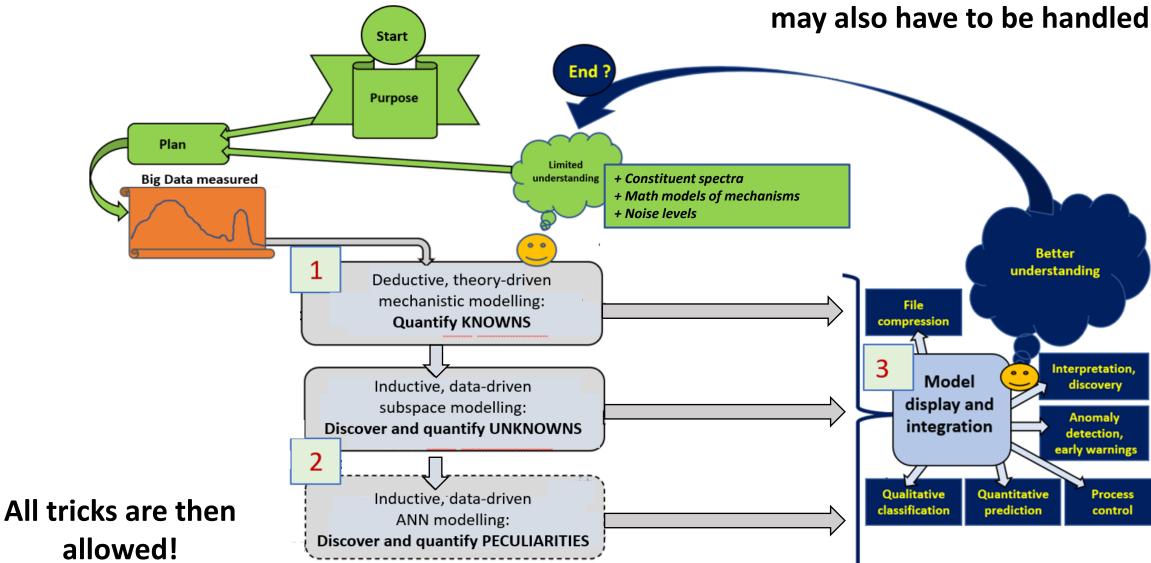
Outliers and irrelevant anomalies

UNEXPECTED OUTLIERS etc may have to be handled



Very strange behaviours

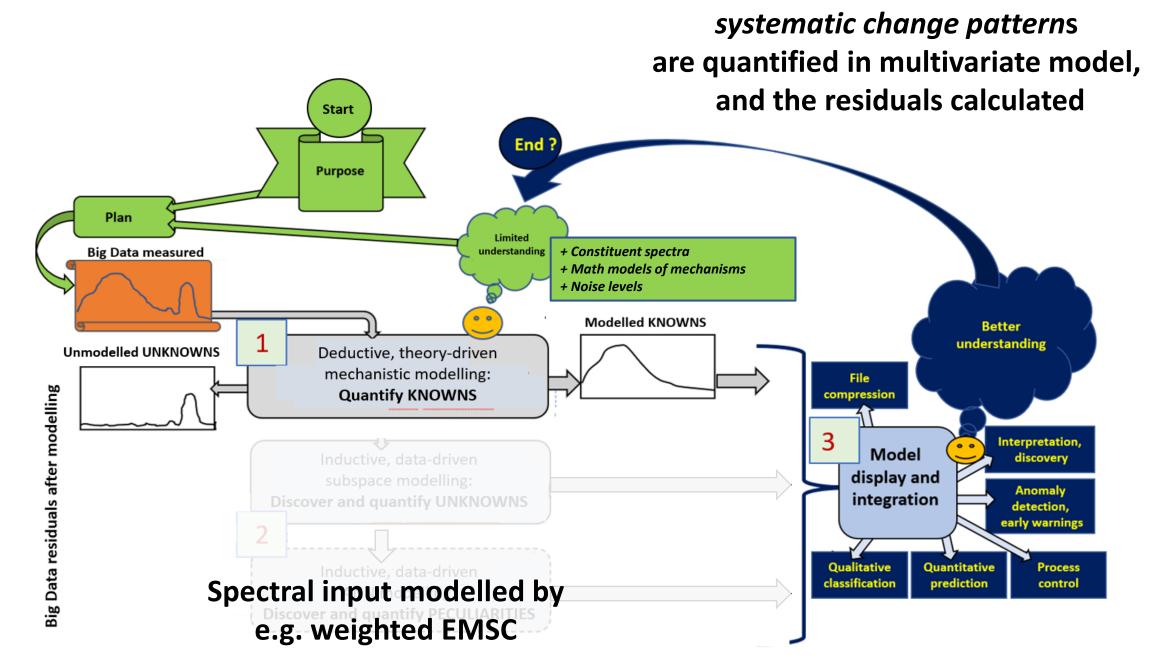
UNEXPECTED, non-systematic PECULIARITIES



Modelling KNOWN patterns

Open

KNOWN



modelling

Big Data residuals after

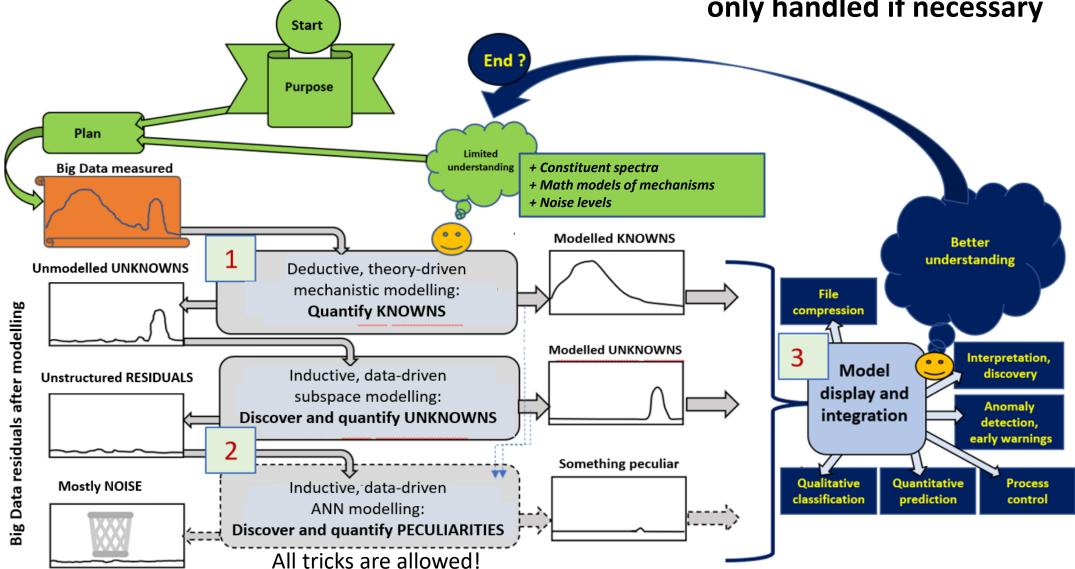
Modelling UNKNOWN patterns

e.g. weighted PCA

The UNKNOWN, but systematic change patterns Are discovered, profiled and quantified by multivariate "machine learning" Start End? Purpose Plan Limited **Big Data measured** understanding + Constituent spectra + Math models of mechanisms + Noise levels Modelled KNOWNS Better understanding Unmodelled UNKNOWNS Deductive, theory-driven mechanistic modelling: File **Quantify KNOWNS** compression Modelled UNKNOWNS 3 Interpretation, Model Inductive, data-driven discovery Unstructured RESIDUALS display and subspace modelling: Anomaly integration **Discover and quantify UNKNOWNS** detection, early warnings Qualitative Quantitative Process classification prediction Spectral residuals modelled by control

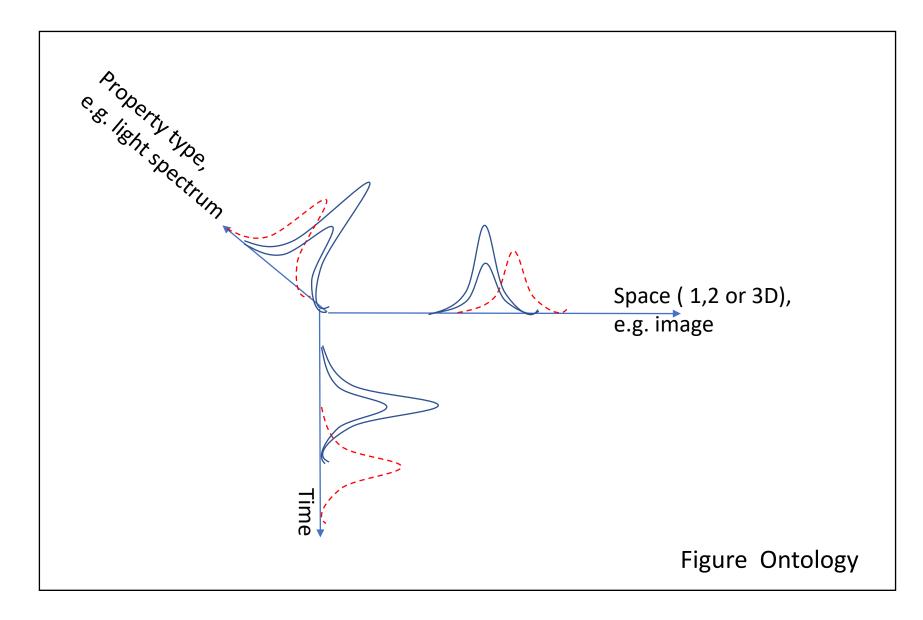
Modelling UNKNOWN patterns

UNEXPECTED, non-systematic PECULIARITIES only handled if necessary

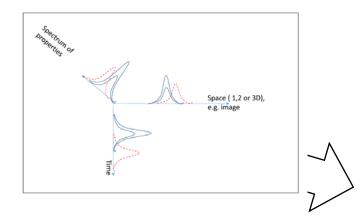


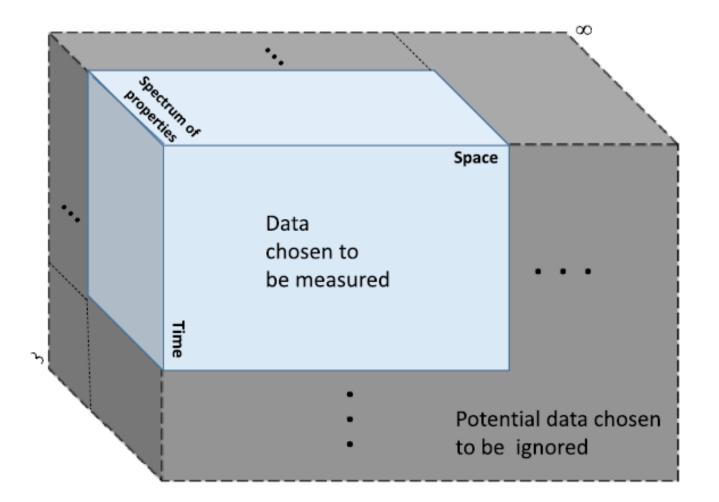
Variances explained in a representative set of samples Start End? Purpose Plan Limited **Big Data measured** Constituent spectre E.g. for diffuse NIR spectra Modelled KNOWNS Better 80% understanding Unmodelled UNKNOWNS Deductive, theory-driven mechanistic modelling: File Big Data residuals after modelling **Quantify KNOWNS** compression Modelled UNKNOWNS 3 18% Interpretation, Model discovery Inductive, data-driven Unstructured RESIDUALS display and subspace modelling: Anomaly integration **Discover and quantify UNKNOWNS** detection, early warnings 0.5% Something peculiar Qualitative Quantitative Process Mostly NOISE Inductive, data-driven classification prediction control 1.5% ANN modelling: Discover and quantify PECULIARITIES

Ontology: position and intensity variation in time, space and properties



Which DATA are measured?





Epistemology: measure position and intensity variation in time, space and properties, and extract interpretable essence by data modelling

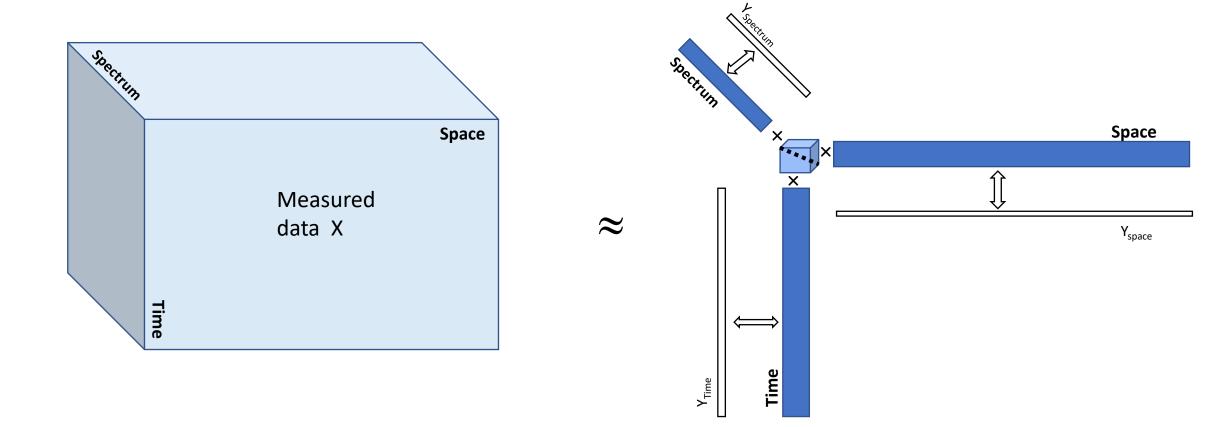
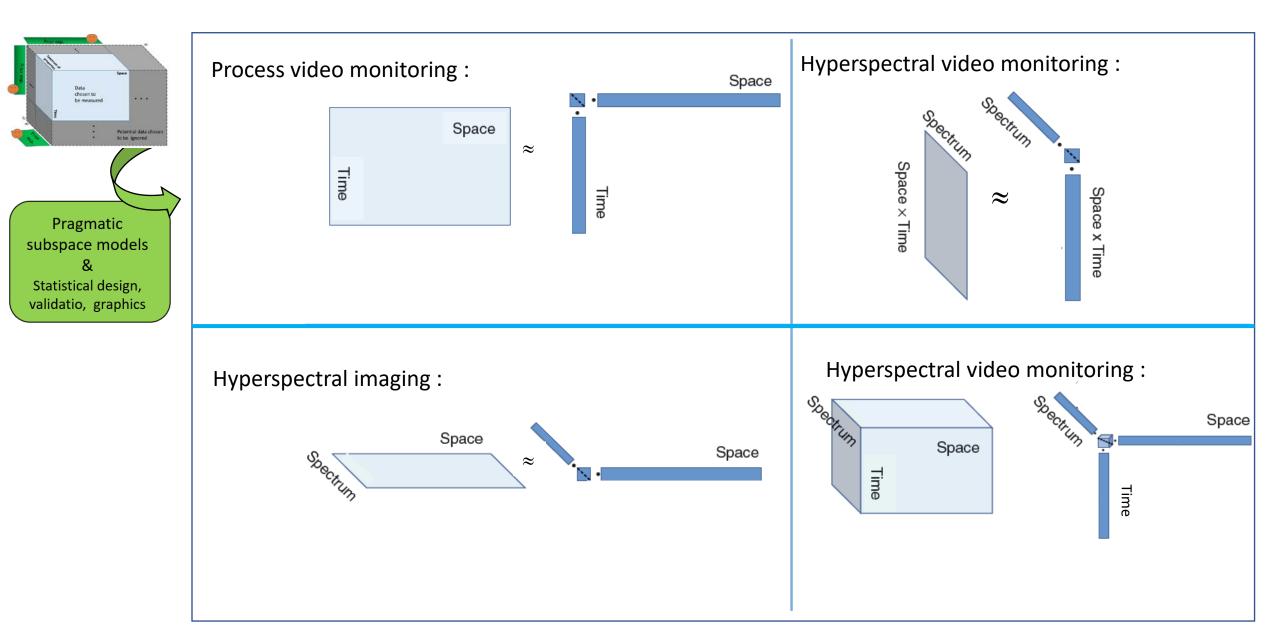


Figure N-linear

Subspace autoencoder, examples:



Subspace regressions, examples:

