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ALL interesting
change patterns

(+ outliers)

Uninteresting
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OTFP: Automatic modelling of
continuous high-dimensional data streams

On-The-Fly-Processing software for  e.g. 
thermal – and hyperspectral video in industry (Vitale et al. 2017)

X Y
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only

Subspace inspection
( two first PLS PCs)
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Five different powder mixtures
measured by light transmission, 

each at varying sample - thickness and - compression

Conventional linearization
+ 
multivariate calibration
(cross-validated PLSR)

Retaining
chemical info 
only

PCA & PLS regression etc : 
Low-dimensional subspace ! 

graphic insight ⇒

PLS PC #1

PLS PC #2
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A ≈ B × C + D
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EMSC:   Extended Multiplicative Signal Correction

Simple linear model, using high-school algebra:

X ≈ A × B  + C :         Find B and C, then Xcorrected=(X-C)/B

A=Spectral knowledge

X=NIR absorbance log(1/T) or log(1/R)
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VNIR;
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Similar two phase-kinetics for
physical shrinkage  and chemical composition change

Physical shape effects
(shrinkage due to drying)

Drying wood in SWIR
(900-2500 nm) 

start
start

end

end
≈

Optical density effects
(SWIR light scattering & 

absorption due to drying)
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Thank you!

harald.martens@ntnu.no
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Where you see a PEAR,                I see a SQUARE    

… just streching it a bit.

Linearizing the inputs:
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Open BIG DATA in Science and Technology (S&T)

Results
Calibration

MODEL

Modern spectral instruments generate Big Data:
High-speed scanners

Hyperspectral imaging

Hyperspectral video
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Calibration
MODEL

Model 
display 
and use

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

Most technical scenes and samples
change in systematic ways 

according to laws of nature, 
and so do most spectral instruments.

A calibration MODEL is needed.

Laws of nature, 
and other common causes



Open Spectra from common causes
show patterns

Calibration
MODEL

Model 
display 
and use

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

Common causes generate 
systematic change patterns
from spectrum to spectrum

The systematic change patterns allows us 
to build a Calibration MODEL 
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Some causes are expected

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

Many KNOWN causes give
NICE, systematic change patterns 

Many KNOWN systematic change patterns
may be modelled by simple linear models 

with additive and multiplicative model elements
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+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

Some KNOWN causes give
NOT SO NICE, but still

systematic change patterns 

Highly non-linear KNOWN systematic change patterns
may be modelled by simple linear models 

via multivariate linear meta-models 
based on computer simulation studies

Some causes are expected



Open Other causes are unexpected

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

But UNKNOWN causes can still give
NICE, systematic change patterns 

Many UNKNOWN, but systematic change patterns
may be modelled by purely additive elements



Open Outliers and irrelevant anomalies

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

UNEXPECTED OUTLIERS etc
may have to be handled

Find them, 
look at them, 
save them (?)

Outliers and mistakes
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Very strange behaviours

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

UNEXPECTED, non-systematic 
PECULIARITIES

may also have to be handled

All tricks are then 
allowed!



Open Modelling KNOWN patterns

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

KNOWN
systematic change patterns 

are quantified in multivariate model,
and the residuals calculated

Spectral input modelled by 
e.g. weighted EMSC



Open Modelling UNKNOWN patterns

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

The UNKNOWN, but
systematic change patterns

Are discovered, profiled and quantified 
by multivariate “machine learning”

Spectral residuals modelled by 
e.g. weighted PCA



Open Modelling UNKNOWN patterns

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

UNEXPECTED, non-systematic 
PECULIARITIES

only handled if necessary

All tricks are allowed!
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Variances explained
in a representative set of samples

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

80%

18%

0.5%

1.5%

E.g.  for diffuse NIR spectra
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Space ( 1,2 or 3D), 
e.g. image

Tim
e

Figure Ontology

Ontology: position and intensity variation in time, space and properties
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≈

Tim
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Space Space
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×

×
×

Figure N-linear

Measured
data  X Yspace

Y T
im

e

Epistemology: measure position and intensity variation in time, space and properties, 
and extract interpretable essence by data modelling
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Subspace autoencoder,  examples:

Process video monitoring : Hyperspectral video monitoring :

Hyperspectral imaging : Hyperspectral video monitoring :

≈

≈

≈≈

Tim
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Subspace regressions,  examples:

Process video monitoring : Hyperspectral video monitoring :

Hyperspectral imaging : Hyperspectral video monitoring :

≈

≈

≈≈

Tim
e   
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