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Predicting something from many other things

Measured variables:
BIG DATA

Real-world qualities
or aspects:
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Predicting something from many other things

Prior
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Measured variables:
BIG DATA

Better
control

4

A

Pragmatic
subspace models
&

Statistical design

\_ & validation -

G—

Real-world qualities
or aspects:

% BETTER
knowledge
)

S




BIG DATA

Hybrid Chemometric Subspace Modelling

Hyperspectral
image of wood

Principal components



BIG DATA

Hybrid Chemometric Subspace Modelling

Hyperspectral
image of wood

Edvard Munch: SCREAM

Principal components
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A way to analyze spectra

Science in general :

What drives us?

/ /o',e See hO\Nm

This needs
to be done
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A way to analyze spectra

NIR & Chemometrics:
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Input DATA = RECORDS x VARIABLES:

NIR spectra etc
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Input DATA = RECORDS x VARIABLES:

NIR spectra x pixels x repeated cyclic times
X
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OTFP: Automatic modelling of
continuous high-dimensional data streams

X Y

10 1

10° 104 108 102

RECORDS
(samples, dates, images)

On-The-Fly-Processing software for e.g.

Learning model

L)

."'F.T,
3 Qj

ALL interesting
change patterns
(+ outliers)

thermal — and hyperspectral video in industry (Vitale et al. 2017)

Noise

+ €

Uninteresting
noise

idletechs
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Input DATA = RECORDS x VARIABLES:

NIR spectraetc  ===) Qualities

X Y
VARIABLES

RECORDS
(samples, time points, images)
o105 104 100 102 10 1
.
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Input DATA = RECORDS x VARIABLES:

NIR spectra etc

X
VARIABLES

1

102 10

RECORDS
(samples, dates, images)
103

~ 105 107

Qualities
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Input DATA = RECORDS x VARIABLES:

X

VARIABLES
1 103 106 1012
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Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
A) . : : :
Conventional linearization o5 o
£
+ = !
multivariate calibration = = — 0
(cross-validated PLSR) 850 900 950 1000 850 900 950 1000 0 02 04 06 08
Yrue

Wavelength, nm Wavelength, nm
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Conventional linearization
+

multivariate calibration
(cross-validated PLSR)

Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

900 950 1000
Wavelength, nm

900 950 1000
Wavelength, nm

Predicted uncertainty: OK!

)

Y=proten fracion

True and predicted [protein]: y;,.. and yp.og
PLS Regression.
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Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
A) . : : :

= 1
Conventional linearization o5 o

ki
+ = !
multivariate calibration — : 0
(cross-validated PLSR) 850 900 950 1000 850 900 950 1000 0 04| o4 06 |[¢8 1

Wavelength, nm Wavelength, nm Yirue

Predicted uncertainty: OK!

Input spectra, Log({1/T)

&

4
850 200 950 1000 1050
Wavelength, nm

Regression coefficient =
«Net Analyte Signal»:

Regression coefficients

bf3 PLS components)
s b B s 8 5 8




Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
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Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
A) . : : :
= !
Conventional linearization o5 o
B

+ = !
multivariate calibration = — 0
(cross-validated PLSR) 850 900 950 1000 850 900 950 1000 0 02 04 06 08

Wavelength, nm Yirue

OEMSC linearization

+

multivariate calibration
(cross-validated PLSR)

-

Subspace inspection
LIN, N
=2 ( two first PLS PCs)

A=BxC+D
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Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
A) . : : :

3
z I

Conventional linearization o5 4
B

+ = '

multivariate calibration 7 , 0

(cross-validated PLSR) 850 900 950 1000 850 900 950 1000 0 02 04 06 08

Wavelength, nm Wavelength, nm Yirue
Absorbance preprocessed by OEMSC, ——
D) light scattering removed o
OEMSC linearization ~ __ = L e
. . . . o - " e
multivariate calibration 2 ' .
(cross-validated PLSR) ‘ -
- = : 7, —
80 900 950 1000 e —
Wavelength, nm =
Retaining only Subspace inspection

chemical info ( two first PLS PCs)



Five different powder mixtures
measured by light transmission,
each at varying sample - thickness and - compression

True and predicted [protein]: y;,.. and yp.og

Q) PLS Regression.
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(cross-validated PLSR) 850 900 950 1000 850 900 950 1000 02 04 06 08
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A: Input log(1/T)

True and predicted [protein]: yy,.. and Yp,.q

amical
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A: Input log(1/T)

- True and predicted [protein]: yy,.. and Yp,.q
PLS Regression.
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EMSC: Extended Multiplicative Signal Correction

Simple linear model, using high-school algebra:

XeNIRabsorbance log(L/M) orIoBU/R)




Open

A: Input log(1/T)

B: E

MSC w/ known constituent spectra

C: EMSC w/ known constituent spectra
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Wavelength, nm

Wavelength, nm v=[gluten]

EMSC: Extended Multiplicative Signal Correction

Simple linear model, using high-school algebra:

X=NIR absorbance og(1/T) or OB(U/R) roy

Find B and C, then X o recteq=(X-C)/B
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f (absorbance)

" Constituents’ scattering g

A: Input log(1/T)

860 880 900 920 940 960 980 1000
Wavelength, nm

D: OEMSC w/ unknown constituent spectra

I

difference removed

Wavelength, nm

1020 1040

B: EMSC w/ known constituent spectra
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C: EMSC w/ known constituent spectra
N
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v=[gluten]

f (absorbance)

E: OEMSC w/ unknown constituent spectra

[ Constituents’ scattering
- difference retained

850 900 950 1000

Wavelength, nm

1050

v=[gluten] predicted, using 1 PC

F: OEMSC w/ unknown constituent spectra
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VNIR;
400-1000 nm

Big Data: Hyperspectral «video»
A single piece of drying wood:
>350 000 000 VNIR reflectance spectra,

~200 channels each, measured at 150 consecutive times

EMSC modelling
KNOWN and
UNKNOWN

physics &
chemistry:

Modelling
KNOWN
spectral change patterns

Discovering and
modelling
UNKNOWN
spectral change patterns

Knowledge-driven —
modelling O}-

ODEs/
PDEs

a

CREEN

BATARYIE
|

AN
‘] ODEs/
PDEs
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VNIR:
400-1000 nm

A
w@.TbW'w T

SWIR:
900-2500 nm

absorbance
g oo D oL
2 &4 N W & 0 O
-
(=20
-]
o
2
Nl
2
o
] :
2
83 8
-
=
g3
-]
:‘ -y
@
2 ]
-
" -3
=
o
o
o
2
2

AN

Big Data: Hyperspectral «video»

A single piece of drying wood:
>350 000 000 VNIR reflectance spectra,

~200 channels each, measured at 150 consecutive times

EMSC modelling

KNOWN and
UNKNOWN
physics &
chemistry:
Two-domain
IDLE modelling:

\ Space (1,2 or 3D)

e.g. image

Modelling
KNOWN
spectral change patterns

Discovering and
modelling
UNKNOWN
spectral change patterns

imites
understanding
Knowledge-driven —
modelling O}-

Data-driven
modelling

ODEs/
A PDEs

i

|

\
ODEs/
PDEs

Discovering and
modelling
UNKNOWN
sensor motion and
sample shrinkage

Motion fields
7 FFPTITTVYRNN




Drying wood in SWIR
(900-2500 nm)

Similar two phase-kinetics for
physical shrinkage and chemical composition change

scores on PC 82 - EV: 217

Physical shape effects
(shrinkage due to drying)

HO
G0
40
20
end
-4 |

=13 .
o 100 200 00 400
scores on PPC 81 - EV: 9697

start
F

22

-EV: 0.04

scores on PC #2

g
=
w

o
=)
N

o

Optical density effects
(SWIR light scattering &
absorption due to drying)

B A Vs

start

0.5
scores on PC #1 - EV: 99.95

-0.5
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Math
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PLSR etc uses a linear method,
but can often handle non-linear responses automatically

Many data points in a high-dimensional space
e.g. 100 wavelengths (Y, X;, X5,... , X100),
happen to form a banana-shaped cloud :

-
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MODEL NG »

A
P o %
apointintiny/ ] )
°
(- I °
e o
o o
e ©
® o
o ®
-

X100




Open

PLSR etc uses a linear method,
but can often handle non-linear responses automatically

Many data points in a high-dimensional space
e.g. 100 wavelengths (Y, X;, X5,... , X100),
happen to form a banana-shaped cloud :

-«
MATHEMATICA,
MODEL NG »

Y
A

1D approximation

X100
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PLSR etc uses a linear method,
but can often handle non-linear responses automatically

Many data points in a high-dimensional space
e.g. 100 wavelengths (Y, X;, X5,... , X100),
happen to form a banana-shaped cloud :

Y
A

2D approximation

X100

22

2D approximation
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PLSR etc uses a linear m

but can often handle non-linear responses automatically

Many data points in a high-dimensional space
e.g. 100 wavelengths (Y, X;, X5,... , X100),
happen to form a banana-shaped cloud :

ethod,

Y
A

2D approximation

X100

<

22

/

X100

26 — —
850 900 950 1000 *.
Wavelength, nm

flabsorbance)

900 950 1000
Wavelength, nm



Linearizing the inputs:
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Linearizing the inputs:

Where you see a PEAR, | see a SQUARE

... just streching it a bit.
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Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)

1. DL as «hunting
Deep Learning(DL)

dog»:

If DL did not find anyting, then

Did the DL find
anything?

find a better project !
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Open

Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)

1. DL as «hunting
Deep Learning(DL)

dog»:

anything?

Did the DL find

If DL did not find anyting, then
find a better project !

Find patterns in
the hidden nodes
of DL

2. DL «hidden node» scores as data input:

Deep Learning(DL)
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Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)

1. DL as «hunting dog»:
Deep Learning(DL)

If DL did not find anyting, then
find a better project !

Did the DL find
anything?

Find patterns in 2. DL «hidden node» scores as data input: Deep Learning(DL)
the hidden nodes !
of DL 4 f

H-!‘“ _r"‘!-l 1 -

Look for 3. DL for clean-up:
«funny» patterns Look for structures in residuals after PCA

in PCA residuals

VV
&
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Ways to combine Deep Learning (DL) and Hybrid Chemometrics (HC)

1. DL as «hunting dog»:
Deep Learning(DL)

If DL did not find anyting, then
find a better project !

Did the DL find
anything?

Find patterns in 2. DL «hidden node» scores as data input: Deep Learning(DL)
the hidden nodes !
‘-I-!A--._I-.il-l

Look for 3. DL for clean-up:
«funny» patterns Look for structures in residuals after PCA
in PCA residuals

> i
Look for 4. DL as post-processing: ]
Higher-order Look for more complex structures :> | !
complexities in in the combined output scores and :l.,“ ~_:-5+|[.

modelled subspace | residual statistics from EMSC & PCA
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BIG DATA in Science and Technology (S&T)

Modern spectral instruments generate Big Data:

@ High-speed scanners
~—1

Hyperspectral imaging

— ' Hyperspectral video

Calibration b
MODEL Results

¥V

Qualitative Quantitative

classification prediction
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Laws Ofna tUI"e/ Most technical scenes and samples

change in systematic ways

a/?d Other commaon causes according to laws of nature,

and so do most spectral instruments.
A calibration MODEL is needed.

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

Better

Calibration understanding
MODEL File

compression

Interpretation,

MOdEI _ discovery

dlsPIay Anomaly
and use detection,
early warnings

Qualitative Quantitative Process

classification prediction control



" Spectra from common causes

show patterns

Common causes generate
systematic change patterns
from spectrum to spectrum

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

MODEL

{ Calibration

The systematic change patterns allows us

to build a Calibration MODEL

Better
understanding

File
compression

Interpretation,

MOdEI _ discovery

dlsPIay Anomaly
and use detection,
early warnings

Qualitative Quantitative Process

classification prediction control
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Some causes are expected

Many KNOWN causes give
NICE, systematic change patterns

— Limited

}\u;ihjﬁi

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

a )} )

Deductive, theory-driven
mechanistic modelling:
Quantify KNOWNS

Many KNOWN systematic change patterns
may be modelled by simple linear models

with additive and multiplicative model elements

Better
understanding

File
compression

‘ Interpretation,
Model discovery

display and
integration

Anomaly
detection,
early warnings

Qualitative Quantitative Process
classification prediction control




Open

Some causes are expected |
Some KNOWN causes give

NOT SO NICE, but still
systematic change patterns

— Limited

Big Data measured understanding | + Constituent spectra
) + Math models of mechanisms
+ Noise levels

D] ]l @ ' Better

. ! derstandi
1 Deductive, theory-driven -~ understanding
mechanistic modelling: File
Quantify KNOWNS compression

‘ Interpretation,
Model discovery

display and
integration

Anomaly
detection,
early warnings

Highly non-linear KNOWN systematic change patterns
may be modelled by simple linear models
via multivariate linear meta-models Qoo | oredicion | comel
based on computer simulation studies
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Other causes are unexpected

But UNKNOWN causes can still give
NICE, systematic change patterns

— Limited

understanding | + Constituent spectra
+ Math models of mechanisms
+ Noise levels
b} ]l @ ' Better

understanding

Big Data measured

1 Deductive, theory-driven ™~
mechanistic modelling: - File
L Quantify KNOWNS compression

J_L ‘ Interpretation
Inductiv\édata-driven Model di:w\-‘enf '

subspace modelling: display and PE—

Discover and quantify UNKNOWNS integration T
early warnings

2

wr Qualitative Quantitative Process
classification prediction control

Many UNKNOWN, but systematic change patterns
may be modelled by purely additive elements



Big Data measured

— Limited

}\u;iujﬁi

)} )

Deductive, theory-driven

|

mechanistic modelling:
Quantify KNOWNS

~

" Outliers and irrelevant anomalies

UNEXPECTED OUTLIERS etc

+ Constituent spectra
+ Math models of mechanisms
+ Noise levels

J1

(

N
Inductive, data-driven
subspace modelling:

Discover and quantify UNKNOWNS

Find them, 2

may have to be handled

Better
understanding

File

compression

‘ Interpretation,
discovery

Model

look at them,
save them (?) -

[T
’

Qualitative
classification

———

display and
integration

Anomaly
detection,

early warnings

Quantitative
prediction

Process
control
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Very strange behaviours

UNEXPECTED, non-systematic
PECULIARITIES
may also have to be handled

— Limited
Big Data measured ~understanding | + Constituent spectra

+ Math models of mechanisms

+ Noise levels

D ])' :__: \ Better
. ! understandin
1 Deductive, theory-driven ™ ¢
mechanistic modelling: - > File
Quantify KNOWNS compression
4

J1

N
Inductive, data-driven
subspace modelling: >
Discover and quantify UNKNOWNS

‘ Interpretation,
Model discovery

display and
integration

Anomaly

detection,
2 / early warnings
. E Inductive, data-driven - ‘: Qualitative Quantitative Process
AII trICks are then E ANN modelling: i > classification prediction control
-1 Discover and quantify PECULIARITIES f
allowed! X ,
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Modelling KNOWN patterns KNOWN

systematic change patterns
are quantified in multivariate model,
and the residuals calculated

— Limited

~understanding | + Constituent spectra
+ Math models of mechanisms
+ Noise levels

> ]l @ ' Modelled KNOWNS Better

Unmodelled UNKNOWNS 1 Deductive, theory-driven E— e
mechanistic modelling: - :> File
Quantify KNOWNS compression
[ k .

Big Data measured

‘ Interpretation,
Model discovery

display and
integration

Anomaly
detection,
early warnings

Qualitative Quantitative Process

classification prediction control

Spectral input modelled by
e.g. weighted EMSC _

Big Data residuals after modelling




" Modelling UNKNOWN patterns

The UNKNOWN, but
systematic change patterns
Are discovered, profiled and quantified
by multivariate “machine learning”

— Limited
Big Data measured understanding | + Constituent spectra
+ Math models of mechanisms
+ Noise levels

> ) e ' Modelled KNOWNS Better

S

o

Unmodelled UNKNOWNS 1 Deductive, theory-driven E— L T
mechanistic modelling: - :> File
Quantify KNOWNS compression
[ k _

9’ Modelled UNKNOWNS CJ——
Unstructured RESIDUALS Inductive, data-driven Model )
subspace modelling: f\_ :> display and p—
K—] Discover and quantify UNKNOWNS integration detection,

early warnings

2

Qualitative Quantitative Process

classification prediction control

Spectral residuals modelled by
e.g. weighted PCA -

Big Data residuals after modelling




" Modelling UNKNOWN patterns

UNEXPECTED, non-systematic
PECULIARITIES
only handled if necessary

— Limited
~understanding | + Constituent spectra

+ Math models of mechanisms
+ Noise levels

Big Data measured

ﬂ' e ' Modelled KNOWNS Better

S
e

Unmodelled UNKNOWNS 1 Deductive, theory-driven )
mechanistic modelling: - :> File
Quantify KNOWNS compression
[ k .

0]

understanding

9’ Modelled UNKNOWNS L —
Unstructured RESIDUALS Inductive, data-driven Model discovery

display and
integration

Anomaly
detection,
early warnings

subspace modelling: f\_:>
K—— Discover and quantify UNKNOWNS

= 2

————————————————————————————— ~ Something peculiar

Qualitative Quantitative Process
classification prediction control

Mostly NOISE Inductive, data-driven i
ANN modelling: LoDy —
]
r ,
]

---+4 Discover and quantify PECULIARITIES

——— All tricks are allowed!

Big Data residuals after modelling




Variances explained
in a representative set of samples

m

_I'

I A Coanctitiiont cnorct

E.g. for diffuse NIR spectra
> ]‘l (:‘“-_:;l 30% Modelled KNOWNS undfrj::ding

Unmodelled UNKNOWNS 1 Deductive, theory-driven )
mechanistic modelling: - :> File
Quantify KNOWNS compression
[ k .

3’ 18% Modelled UNKNOWNS L —
Unstructured RESIDUALS Inductive, data-driven Model discovery

display and
integration

Anomaly
detection,
early warnings

subspace modelling: f\‘:>
K—— Discover and quantify UNKNOWNS

ﬂ ————————————— 0.5% Something peculiar

Big Data residuals after modelling

Mostly NOISE ; Inductive, data-driven . (Ilua'liz:tat:?e Qual;tiit:tive pm.;es:
1 5% : ANN mOdE”ing: :___,\\ r'--"‘\ classiTication prediction contro
::::ll\ Discover and quantify PECULIARITIES r~>” A oy’

~
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Ontology: position and intensity variation in time, space and properties

Space (1,2 or 3D),

Z »

e.g. image

Figure Ontology




Which DATA are measured?

T eg image

Data
chosen to

be measured
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Epistemology: measure position and intensity variation in time, space and properties,
and extract interpretable essence by data modelling

Space

Measured

U

data X

YTime

awij
Time II

Figure N-linear
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Subspace autoencoder, examples:

——

i

B

Process video monitoring :

Hyperspectral video monitoring :

Space
= - By
. g 2,
Space % "5‘%)
~ < *
o \@ ]
= = .
3 = B ~ -
3 x 2
5 <
o =
\ 3
18]
Hyperspectral imaging : Hyperspectral video monitoring :
%) )
re) re)
3 Qch Space
Space - I
—\ AN Space 7 Space ” 8
E -

%,
AN
N
%

awi |
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Subspace regressions, examples:

l ‘ ~L% | Process video monitoring : Space Hyperspectral video mowng :
o - :s*
: space | [] * 2 O%X
R\ P A % % W,
5 2 =
_| m __ -
3 =N - E »
© 3 ® ~ o
o x o
| = ®
5 — ;
\ 3
@
Hyperspectral imaging : Hyperspectral video moni{ing =
& Q
2 3 \ 0%& Space
. Space %, Space % (o —
,o%; 5' ~ _—
_|
2% ® PN (§D'
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