AN OVERVIEW ON ADVANCED CHEMOMETRIC APPROACHES FOR (N)IR SPECTROSCOPY

Federico Marini

Dept. Chemistry, University of Rome "La Sapienza", Rome, Italy

Classification

"Who's that, flyin' up there? Is it a bird? no Is it a plane? no Is it the twister? Yeah"

Chubby Checker

- "To find a criterion to assign an object (sample) to one category (class) based on a set of measurements performed on the object itself"
- Category or class is a (ideal) group of objects sharing similar characteristics
- In classification categories are defined a priori

What if....

• Classes are not well defined, or

Class A

 There is only a single class of interest to be discriminated from all the rest (asymmetric classification)

Class Non A

A different approach: Class modeling

discriminant methods

class-modeling

SIMCA

- Originally proposed by Wold in 1976
 - SOFT: No assumption of the distribution of variable is made (bilinear modeling)
 - INDEPENDENT: Each category is modeled independently
 - MODELING of CLASS ANALOGIES: Attention is focused on the similarity between object from the same class rather then on differentiating among classes.
- To build the individual category models, PCA is used.
 - The number of significant components A (defining the "inner space") can be different from class to class.
 - The remaining M-A components represent the residuals ("outer space")

SIMCA – Defining the model space

KDE & SIMCA-like approaches

- CLASSY¹: Kernel density estimation of the pdf in the scores space
 - Meant to achieve «probabilistic» classification
 - Discriminant approach: calculation of the posterior probabilities for each class through Bayes' theorem
- PLS-DM²: Class-modeling achieved by combining KDE-based scores distance and orthogonal distance
 - PLS-based bilinear decomposition
 - Model space estimation analogous to «SIM»-SIMCA ($\frac{SD}{SD_{crit}} \le 1 \& \frac{OD}{OD_{crit}} \le 1$)

¹H. Van der Voet and D.A. Doornbos, *Anal. Chim. Acta* **161** (1984) 115. ²P. Oliveri et al., *Anal. Chim. Acta* **851** (2014) 30.

SIMCA – A unified approach for single and multiple blocks

Potential

$$p(\mathbf{x}|g) = P_g(\mathbf{x}) = \frac{\sum_{i=1}^{n_g} p_{g,i}(\mathbf{x})}{n_g}$$

$$p_{g,i}(\mathbf{x}) = \begin{cases} 0 & \text{if } \|\mathbf{x} - \mathbf{x}_{g,i}\| > d_{\max} \\ \frac{d_{\max} - \|\mathbf{x} - \mathbf{x}_{g,i}\|}{d_{\max}^2} & \text{if } \|\mathbf{x} - \mathbf{x}_{g,i}\| \le d_{\max} \end{cases}$$

$$p_{g,i}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} |\mathbf{S}_g|} e^{-\frac{1}{2} (\mathbf{x} - \mathbf{x}_{g,i})^{\mathrm{T}} \mathbf{S}_g^{-1} (\mathbf{x} - \mathbf{x}_{g,i})}$$

Potential functions

• Estimate the global pdf for the class as the sum of individual multivariate pdfs centered on each training sample.

• The class boundary is defined by setting the critical value (f_{crit}) of the pdf f(x), at a selected confidence level (f_{crit})

Potential function – Class modeling

$$P_{\gamma,g}(x) = P_g(x_k) + (q-k)[P_g(x_{k+1}) - P_g(x_k)]$$

with

$$q = \frac{\gamma N_g}{100} \ k = \operatorname{int}(q)$$

or

$$P_{100-\gamma,g}(x) = P_g(x_j) + (u-j)[P_g(x_{j+1}) - P_g(x_j)]$$

with

$$u = \frac{(100 - \gamma)N_g}{100} j = \operatorname{int}(q)$$

M. Forina et al., J. Chemometr. 5 (1991) 435-453.

Marini - Heliospir2023

Equivalent determinant

The determinant of the covariance matrix of a Gaussian distribution having the same value of mean probability density function as the one of the current kernel density model

$$f_{crit} = \frac{1}{(2\pi)^{\frac{\nu}{2}} |\hat{\boldsymbol{C}}|^{\frac{1}{2}}} e^{-\frac{\chi_{\alpha}^{2}}{2}}$$
$$|\hat{\boldsymbol{C}}|^{\frac{1}{2}} = \frac{N_{g}}{2^{\nu} \pi^{\frac{\nu}{2}} \sum_{i=1}^{N_{g}} f_{i}(\boldsymbol{x})}$$

Data sets analyzed

PGI Sicilian oranges

Borgo Reale beer

Peel: NIR Spectroscopy Juice: NIR, MIR, UV and Vis Spectroscopy

Senise Bell Pepper

NIR e MIR Spectroscopy

NIR, MIR, UV and Vis Spectroscopy

Optmizing model parameters

Best SIMCA and SIMCA pf results of the pure ground Senise bell pepper class

Best SIMCA Model: MIR Spectroscopy

	PC	SensCal	SpecCal	EffCal	SensCV	SpecCV	EffCV
1 st Derivative	10	100.00	64.00	80.00	70.00	69.00	69.50

Best SIMCA Prediction: MIR Spectroscopy

	SensPred	SpecPred	EffPred
1 st Derivative	80.00	86.67	83.27

Best SIMCApf Model: MIR Spectroscopy

	PC	Optwidth	SensCal	SpecCal	EffCal	SensCV	SpecCV	EffCV
1 st DerivativeED	8	0.6310	100.00	64.00	80.00	75.00	67.00	70.89

Best SIMCApf Prediction: MIR Spectroscopy

	SensPred	SpecPred	EffPred
1 st DerivativeED	80.00	93.33	86.41

Moving to multiple blocks

Multi-block analysis results on pure ground Senise bell pepper samples with Low-Level approach

		PC	Optwidth	SensCal	SpecCal	EffCal	SensCV	SpecCV	EffCV
Ĩ	ED	1	0.1585	100.00	100.00	100.00	100.00	100.00	100.00
j	Α	1	2.5119	100.00	100.00	100.00	100.00	100.00	100.00
j	D	1	2.5119	100.00	100.00	100.00	100.00	100.00	100.00

Multi-block analysis results

Predictions on the test set

	SensPred	SpecPred	EffPred
ED	95.00	100.00	97.47
Α	95.00	100.00	97.47
D	95.00	100.00	97.47

Distance Matrix:

- Euclidean
- Manhattan
- Mahalanobis

Characteristic Distance:

- Min
- Median
- Max
- Centroid

Threshold:

- 95th percentile
- 4th spread

Distance matrix can be calculated both on original variables and after PCA projection (the optimal number of PC can be optimized in CV).

NPCM – Italian Wines

NPCM – Results

Italian wines

	Montepulciano		Nero D'Avola		Pinerolese		Rosso di Montalcino		Sagrantino		Solopaca		Terrano								
	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.
NPCM	100.0	100.0	100.0	100.0	96.1	95.4	100.0	89.8	94.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
SIMCA	100.0	100.0	100.0	100.0	98.4	99.0	100.0	85.1	92.3	100.0	100.0	100.0	75.0	100.0	86.6	71.4	98.1	83.7	80.0	100.0	89.4

Vegetable oils

		Olive		Other vegetable				
	Sens.	Spec.	Eff.	Sens.	Spec.	Eff.		
NPCM	93.3	100.0	96.6	90.0	93.3	91.6		
SIMCA	93.3	100.0	96.6	80.0	100.0	89.4		

Pre-processing

 Data copy may be deformed by artefacts due to factors (physical, chemical and environmental) not of interest for the characterization of the samples under study

Choice of best preprocessing

• Trial and error: explore multiple preprocessing options and select the one leading to the lowest error/best performance (usually in CV)

Pre-processing	LV	RMSECV
SNV	7	0.98
1 st derivative	8	0.86
SNV+1 st derivative	6	0.83

• Experimental design (Gerretzen et al., Anal. Chem. 87 (2015) 12096-12103)

Choice of best preprocessing: Boosting approaches

- Ensemble learning: stack different PLS models using different pretreatments on the same data
 - The output of this approach is computed by averaging the predicted values computed by its constituent learners.
 - Examples are, e.g.:
 - L. Xu, et al. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration, Anal. Chim. Acta **616** (2008) 138-143: Twenty different pre-processing operations, based on first and second derivatives, smoothing, SNV, MSC and their combinations
 - R. Reda et al. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy, Chemometr. Intell. Lab. Syst. **195** (2019) 103873: Six PLS models calculated on data preprocessed by diverse preprocessing approaches, raw, log(1/R), 1st and 2nd derivative, MSC, SNV
- Multi-block approaches
 - Data are preprocessed by different techniques
 - The differently preprocessed matrices are used as input to a multi-block (data fusion) algorithm

Multi-block data

- Different sets of (usually multivariate) data collected on the same samples
- E.g.: Same set of samples characterized by different analytical platforms

Multi-block PLS(-DA)

- Straightforward generalization of standard PLS(-DA)
- Low-level approach:
 - Assumes that global (super-scores) are weighted combination of block scores:

$$\boldsymbol{t}_i = \boldsymbol{X}_i \boldsymbol{w}_i$$
 $\boldsymbol{t}_{super} = [\boldsymbol{t}_1 \ \boldsymbol{t}_2 \ \cdots \ \boldsymbol{t}_B] \boldsymbol{w}_{super}$

- PLS on the concatenated data matrices after suitable scaling.
- Block scores, weights and loadings and super-weights can be obtained a posteriori

Multi-block data

• The same data matrix pre-processed with different approaches

The SPORT approach

SO-PLS is used as the modeling method

Step 1: First PLS model

Step 2: Orthogonalization of second block

Step 3: Second PLS model

W2 orth

Step 4: Orthogonalization of third block

Step 5: Third PLS model

W1 orth

Global model: $Y_{pred} = T_1 Q_1^T + T_{2,orth} Q_{2,orth}^T + T_{3,orth} Q_{3,orth}^T$

Marini - Heliospir2023

Sequential preprocessing through ORThogonalization (SPORT) and its application to near infrared spectroscopy

Jean-Michel Roger^{a, b,*}, Alessandra Biancolillo^c, Federico Marini^d

E

Data sets

Tablets

M. Dyrby et al., *Appl. Spectrosc.* **56** (2002) 579-585.

Meat

C. Borggaard and H.H.Thodberg, *Anal. Chem.* **64** (1992) 545-551.

Wheat

D.K. Pedersen et al., *Appl. Spectrosc.* **56** (2002) 1206-1214.

Wheat & Meat

• Results are compared to those of the stacking approach in L. Xu, et al., Anal. Chim. Acta 616 (2008) 138-143:

Pre-treatment	Wheat			Meat		
	LVs	RMSEC	RMSEP	LVs	RMSEC	RMSEP
SG-9-3-0	11	0.53	0.71	6	2.97	2.80
SG-9-4-0	10	0.55	0.78	6	2.97	2.80
SG-9-3-1	8	0.55	0.66	11	2.11	2.09
SG-9-4-1	9	0.53	0.72	14	1.89	2.00
SG-9-3-2	6	0.54	0.52	10	1.97	2.08
SG-9-4-2	8	0.52	0.55	8	1.88	2.13
SNV	10	0.54	0.68	4	2.09	2.01
stacked ^a	-	0.50	0.57	-	1.55	1.82
boosted	0,0,4,0,0,0,11	0.47	0.47	0,0,0,0,0,7,7	1.50	1.65

- SPORT approach performs better than any single pretreatment model and of the stacked approach
- Very parsimonious selection \rightarrow only two blocks are included in each model

Tablets

• By exchanging the order of the blocks, it is possible to explore common and distinctive information

block number	Boosting 1	Boosting 2	Boosting 3
1	raw data	SNV	SG-15-3-2
2	SG-15-2-1	raw data	SNV
3	SG-15-3-2	SG-15-3-2	raw data
4	SNV	VSN, tol 0.0067,	VSN, tol 0.0067,
		Npar 2	Npar 2
5	VSN, tol 0.0067,	SG-15-2-1	SG-15-2-1
	Npar 2		
#LV	0,3,0,0,4	0,5,0,2,0	0,0,5,2,0
RMSEC	0.27	0.28	0.28
RMSEP	0.33	0.34	0.34

• Exchanging the order of the blocks has little effect on the predictivity, but impacts the selected pre-processings

Recent developments

Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy

Puneet Mishra $^{\rm a,*},$ Jean Michel Roger $^{\rm b,c},$ Federico Marini $^{\rm d},$ Alessandra Biancolillo $^{\rm e},$ Douglas N. Rutledge $^{\rm f,g}$

- SO-PLS is not the only multi-block method which can be used to fused different pre-treatments of the same data matrix
- The same concept has been exploited in PORTO, where the MB engine is represented by PO-PLS
- Straightforward exploitation of the concept of common and distinct components and lower impact of the order of the blocks

PO-PLS scheme

PORTO

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics

Puneet Mishra^{a,*}, Jean Michel Roger^{b,c}, Federico Marini^d, Alessandra Biancolillo^e, Douglas N. Rutledge^{f,g}

^a Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA, Wageningen, the Netherlands ^b ITAP, INRAE, Institut Agro, University Montpellier, Montpellier, France

^e ChemHouse Research Group, Montpellier, France

^d Department of Chemistry, University of Rome "La Sapienza", Piazzale, Aldo Moro 5, 00185, Rome, Italy e Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy

¹ Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 75005, Paris, France

8 National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia

Pre- processing	Apple	Apple data set		Olive data set		Mango data set		Pear data set	
approach	\mathbf{R}^2	RMSEP	R ²	RMSEP	R ²	RMSEP	R ²	RMSEP	
Raw	0.85	0.77	0.70	1.21	0.76	1.09	0.83	0.52	
MSC	0.86	0.74	0.90	0.70	0.81	0.96	0.81	0.55	
VSN	0.83	0.80	0.92	0.63	0.82	0.96	0.79	0.58	
SNV	0.82	0.82	0.91	0.69	0.81	0.96	0.82	0.54	
2 nd derivative	0.89	0.65	0.90	0.72	0.77	1.07	0.81	0.56	
SPORT	0.95	0.46	0.89	0.73	0.83	0.92	0.84	0.51	
PORTO	0.95	0.44	0.93	0.61	0.84	0.91	0.85	0.49	

Common and distinct components selected by the PORTO approach. The '+' si indicates that the common component is shared by the indicated blocks.

Data sets/ Pre- processing	Com	Common components ^a		Distinct components		
Apple	4	 RAW (26.7%, 0.997) +MSC (71.4%, 0.999) + VSN (69.9%, 0.998) + SNV (71.3%, 0.999) + 2nd derivative (27.5%, 0.997) RAW (11.5%, 0.997) +MSC (15.5%, 0.998) + VSN (16.9%, 0.997) + 2nd derivative (35.5%, 0.997) RAW (17.7%, 0.997) +MSC (6.0%, 0.997) + SNV (6.2%, 0.997) + 2nd derivative (6.5%, 0.996) RAW (34.0%, 1.000) + 2nd derivative (27.1%, 1.000) 	3	5 RAW (9.0%) 6 MSC (2.1%) 7 2nd derivative (0.5%)		
Olive	5	 RAW (5.1%, 0.996) + MSC (22.7%, 0.998) + VSN (26.8%, 0.994) + SNV (22.9%, 0.999) +2nd derivative (24.5%, 0.995) MSC (12.4%, 0.999) +VSN (12.5%, 0.995) +SNV (12.4%, 0.999) + 2nd derivative (40.6%, 0.994) RAW (29.9%, 0.997) + MSC (26.1%, 0.997) + 2nd derivative (18.6%, 0.995) RAW (14.3%, 0.994) + SNV (2.7%, 0.990) +2nd derivative (3.3%, 0.988) MSC (7.7%, 0.999) + VSN (53.4%, 0.999) + SNV (7.6%, 0.999) 	3	6 RAW (42.2%) 7 MSC (10.7%) 8 VSN (0.2%)		

B AND INTELLIGENT LABORATOR

SYSTEMS

Chemometrics and Intelligent Laboratory Systems 222 (2022) 104497

CHEMOMETRICS AND INTELLIGENT LABORATORY

Check for updates

ROSA → PROSAC

Contents lists available at ScienceDirect Chemometrics and Intelligent Laboratory Systems SEVIER journal homepage: www.elsevier.com/locate/chemometrics

Pre-processing ensembles with response oriented sequential alternation calibration (PROSAC): A step towards ending the pre-processing search and optimization quest for near-infrared spectral modelling

Puneet Mishra $^{\rm a},^*$, Jean Michel Roger $^{\rm b,c},$ Federico Marini $^{\rm d},$ Alessandra Biancolillo $^{\rm e},$ Douglas N. Rutledge $^{\rm f,g}$

Multi-block data - 2

 Sometimes blocking can be induced within the same data set, due to physical or chemical reasons:

Hazelnuts data set

Adding variable selection: SO-CovSel

• Variables from the 1st block are selected by CovSel A. Biancolillo et al., J. Chemometr. 34 (2020) e3120

The second X block and the Y are orthogonalized wrt the selected variables

• Variables from the orthogonalized 2nd block are selected by CovSel

 An overall regression model is calculated between the Y and the selected variables Transformed by the second seco

Hazelnuts data set: Predictions

	SO-PLS-LDA			
Class	Predicted PDO	Predicted Common	6 Misclassified	
PDO	38	3		
Common	3	46		
	SO-CovSel-LDA	A	l i i i i i i i i i i i i i i i i i i i	
Class	SO-CovSel-LDA Predicted PDO	A Predicted Common	5 Misclassified	
Class PDO	SO-CovSel-LDA Predicted PDO 39	Predicted Common 2	5 Misclassified	

Hazelnuts data set: Interpretation

Hazelnuts data set: Interpretation - 2

Hazelnuts data set: Interpretation - 4

Conclusions & Questions

Digression: Introducing VSN

Spectral pretreatment: Standard Normal Variate

Correction for linear and additive effects:

 $\mathbf{z}_i \approx a_i \mathbf{1} + b_i \mathbf{z}_{i.chem}$

Mean and standard deviation of measured spectra are used for the correction: $a_i = \text{mean}(\mathbf{z}_i)$ $\mathbf{z}_{i,corr} = \frac{\mathbf{z}_i - a_i}{b_i}$

 $b_i = \operatorname{std}(\mathbf{z}_i)$

Introduction: a simulated example

+ additive and multiplicative effect

Model performances are good (on calibration set) But the model itself is erroneous

Marini - BioSpecMLC2019

Theory

- SNV tends to dilute the information along the whole spectrum
- A solution :
 - To calculate standard deviation and mean on wavelengths little related to Y
 - To normalize the spectrum with these values
- Or, more generally:
 - To calculate diagonal matrix W of weights between
 0 (no selection) and 1 (complete selection)
 - To calculate the normalisation on Wx and apply it to x

An algorithm using RANSAC in practice

An algorithm using RANSAC in practice

- The largest set is selected and stored
- Another pair of spectra is randomly picked
- Procedure continues iteratively until maximum number of runs
- Weights are calculated as frequency of selection in the consensus sets

Results on simulated data

Spectral pretreatment: Extended MSC

May also remove non-linear baseline or contribution from interferents:

 $\boldsymbol{z}_i \approx a_i \boldsymbol{1} + b_i \boldsymbol{z}_{i,chem} + c_i \lambda + d_i \lambda^2 + f_i \boldsymbol{x}_{int}$

- Also in this case, it is easier to describe chemical variation as difference with respect to a reference spectrum, *m*.
- Then: $\mathbf{z}_i = a_i \mathbf{1} + b_i \mathbf{m} + c_i \mathbf{\lambda} + d_i \mathbf{\lambda}^2 + f_i \mathbf{x}_{int} + e_i$
- Which becomes the regression problem:

$$\boldsymbol{z}_i = \boldsymbol{M} \boldsymbol{p}_i + \boldsymbol{e}_i \Longrightarrow \widehat{\boldsymbol{p}}_i = (\boldsymbol{M}^T \boldsymbol{M})^{-1} \boldsymbol{M}^T \boldsymbol{z}_i$$

with
$$p_i = \begin{bmatrix} a_i & b_i & c_i & d_i & f_i \end{bmatrix}^T$$

 $M = \begin{bmatrix} \mathbf{1} & \mathbf{m} & \lambda & \lambda^2 & \mathbf{x}_{int} \end{bmatrix}$

Results on simulated data – 2 EMSC

Real example – 1: Apple Leaves

- Data: apple tree leaf spectra
- Images acquired with an NEO SWIR hyperspectral camera; 1000 2500 nm
- Each spectrum is the mean of pixels from an area
- Two classes :
 - healthy
 - scab disease spot

Raw data

After SNV

After VSN

Real example – 2: Musts

- Data: NIR spectra of musts, associated to values of alcohol by volume.
- The dataset, containins 621 spectra: A calibration set of 414 samples (about 2/3) and a test set of 207 samples (about 1/3) were drawn using Duplex.

	#LV	RMSECV	R ² cv	RMSEP	R ² test
SNV	5	0.890	0.94	0.963	0.93
VSN + Weighted SNV	5	0.653	0.97	0.701	0.96

Digression: selecting the optimal tolerance

- Empirical rule: Max(std(weights))
- Seems to work on many data analyzed so far

Time for doing more SPORT