

In situ monitoring of crystallizations through Spatially Resolved Spectroscopy

PhD director : Denis Mangin – LAGEPP

bpifrance

Supervisors : Emilie Gagnière - LAGEPP Stéphane Labouret - LAGEPP Didier Colson - LAGEPP Noémie Caillol – Axel'One **Romain Kersaudy**

24^{ème} rencontres HélioSPIR – 13th – 15th June 2023

Crystallization

- Separation and purification process
- Production of crystals with well-defined specifications
- Several complex mechanisms (nucleation, growth, agglomeration)
 - \rightarrow Supervision of both physical and chemical parameters
 - \rightarrow *Ex situ* and *in situ* analysis

In situ monitoring of crystallization

(Non-exhaustive list)	Liquid phase concentration	Solid concentration	Crystal size / Growth	Polymorphism
	ATR-FTIR ATR-UV/Vis	Raman NIR	FBRM PVM	Raman
	NIR Raman	Turbidity meter	Imaging / Video probe Acoustic emission	

Objectives

- > Develop methods for *in situ* analysis of physico-chemical parameters of crystallizations with SRS :
 - Descriptor of particle size distribution

CHAUVIN Arnoux

- Solid content
- Liquid phase concentration
- Polymorphism
- Coupling with ex situ and in situ analytical methods

Why use the SRS ?

- Light matter interaction
- Near-infrared detector 900
 1700 nm
- 4 measurement angles

→ To measure both transmitted and scattered light

LAGEP

3

[1] M. Rey-Bayle et al. Multiangle near infrared spectroscopy associated with common components and specific weights analysis for in line monitoring, JNIRS.(2019)
[2] M. Gheghiani et al. Monitoring of polymer content in an emulsion polymerization using spatially resolved spectroscopy in the near infrared region and Raman spectroscopy, Polym. Eng. Sci. 60 (2020)

[3] M. Gheghiani et al. Online Monitoring of the Particle Size in Semibatch Emulsion Copolymerization Using Spatially Resolved Spectroscopy and Raman Spectroscopy, Ind. Eng. Chem. Res. 60 (2021)

Materials and methods

4

Crystallization set-up 2,5L double-jacketed stirred reactor -Stirrer : Mixel propeller TT type -Stirring rate : 350 rpm **ATR-FTIR** Mid-infrared spectroscopy In situ ATR probe (5500 – 12500nm) \rightarrow Reference method for measuring To thermostatic bath the liquid phase concentration To IS50 spectrometer -> To data acquisition unit To SRS spectrometer **SRS** Probe

SamFlex probe

Video probe

 \rightarrow Used to better understand the SRS spectra variations

Laser granulometry (*ex situ*)

 \rightarrow Reference method for measuring the particle size distribution

PT100 probe

Silicon oil

EZProbe video probe

Predictions from calibration database

2 organic compounds studied

1st compound (Industrial)

- 4 particle size cuts :
- 6 solid contents :
- 0 50 μm
- 50 100 μm
- 100 500 μm
- >500 μm
- + mixtures

- 4 temperatures :
 - 45, 55, 65 and 85°C

- 4 particle size cuts : 5 solid contents :
 - 0–90 μm
 - 90 125 μm
 - 125 200 μm
 - 200 315 μm

- 1 to 18 w%
- 1 temperature : 40 °C

Solid content predictions with Support Vector Machine

1st compound (Industrial)

- Calibration : 71 spectra
- Test : 23 spectra
- Prétraitements : 1st derivative (pol. Order : 2, window : 15 pts) + normalization

2nd compound (Adipic acid)

- Calibration : 42 spectra
- Test : 16 spectra
- Prétraitements : 1st derivative (pol. Order : 2, window : 15 pts)
 + normalization

Predictions from calibration database

LAGEP

Solid content predictions with Support Vector Machine

- \rightarrow Impossible to use the model to predict solid content during crystallizations
- Different reasons :
 - Crystal habits
 - Surface properties
 - Particle sizes

Microscope images – calibration powder

Crystals in suspension after a long period of stirring

Images from video probe- crystallization

Predictions from crystallization data and samples – Adipic acid

LAGEP

75 Cooling ramp **Crystallization experiments** 65 Temperature (°C) 55 55 52 Seeding **Batch Cooling crystallizations** From 70°C to 20°C (-1°C/min) with temperature step at Samples 64,5°C to seed Varying initial concentration, seeding method and seed mass 25 15 50 100 150 200 250 0 Time (min) Initial Starting Wet / dry Seed mass Batch concentration Seeding solution seed (g) (wt%) 20,0 1 new non 20,0 2 new non Fouling of the SRS probe 20,0 3 new non 21,23 unintentional batch 3 4 5 19,67 5,6 oui new wet 20,25 5,6 6 new oui wet Calibration set 7 19,99 dry 5,2 new oui 5,2 8 batch 7 19,94 dry oui 19,89 5,2 9 oui dry Test set new 10 batch 9 20,17 unintentional 8 11 19,87 dry 2,6 new oui

Predictions from crystallization data – Solid content

PLS model

X values:

• SRS spectra acquired during crystallizations

Y values for solid content :

- Measures from samples not representative
- Theoretical values calculated from solubility curve and initial concentration measured

Preprocessing: Savistky-Golay smoothing (window : 5 pts) Area normalization Mean centering

LAGEP

Predictions from crystallization data – Solid content

2 stages :

1) 1st part of crystallization

- Strong evolution of the number of particles
- Fast crystal growth

Important inter-batch variability caused by seeding variations

 \rightarrow Important spectral variability causing prediction errors

- Slow increase of solid content
- Very slow crystal growth

Small inter-batch variability – crystals formed tend to the same crystal habit and close sizes

→ Small inter-batch spectral variability causing good predictions

LAGEP

Predictions from crystallization data – Solid content

Test set predictions

LAGEP

11

→ Due to very small solid content values not included in the model

12

Particle size distribution descriptor choice

- No model was found to predict classical descriptors
- Other approach imagined :
 - → Represent crystal size distributions of the samples by principal components calculated by PCA
 → Predict the scores on each principal component

4 components needed :

- $\sim\,$ PC1 and PC2 explain the population between 100 and 1000 μm
- Part of PC3 explain population above 1000 μm
- PC4 explain population of fines between 10 and 100 μm

Predictions from crystallization data and samples – Crystal size

Prediction Models

Prediction of PC1 and PC2 with SVM-R models

Predictions from crystallization data and samples – Crystal size

Prediction Models

12 RMSEC = 0.51129 Fit Fit RMSEC = 1.2281 RMSECV = 1.0195 1:1 RMSECV = 3.3121 1:1 RMSEP = 2.248 RMSEP = 4.6201 Calibration 10 Calibration Calibration Bias = -0.03122 Calibration Bias = 0.13245 Test CV Bias = -0.021648 Test CV Bias = -0.38886 Prediction Bias = 0.90212 Prediction Bias = -2.6403 R² (Cal,CV) = 0.947, 0.754 5 R^2 (Cal.CV) = 0.932, 0.509 R^2 (Pred) = 0.082 Predicted scores on PC4 R^2 (Pred) = 0.029 Predicted scores on PC3 6 2 ε:0,1 ε:0,1 Cost :30 Cost :10 -1 γ: 3.10⁻⁶ $\gamma : 1.10^{-5}$ -6 -2 SV: 24/29 SV: 23/29 -8 -5 0 5 10 -3 -3 -2 2 3 5 6 -1 Measured scores on PC3 Measured scores on PC4

Prediction of PC3 and PC4 scores with SVM-R models

- Easier to find a relationship between the spectra and these descriptors
- Not enough data to build a robust model taking into account a large number a various PSD

Conclusions :

- It is very difficult to build relevant models of physical parameters as solid content and crystal size from synthetic calibration samples
- It is a lot more accurate from data acquired during crystallizations
- SRS associated with PLS model allows the prediction of solid content during adipic acid cooling crystallization
- It is hard to find a good descriptor of PSD because of multimodal distributions
- Prediction of PCA scores of the PSD seems to be a promising approach, but it requires a large database

 \rightarrow We have reached the limits of the probe in term of sizes

Perspective :

- Expanding the database could allow the use of more advanced algorithms (basic ANN, Deep learning method) to model the strong non-linearities caused by the complexity of light scattering

SPIR

Université Claude Bernard (Jp) Lyon 1

Thank you for your attention

Looking for postdoc or job opportunity

Available from October 2023

romain.kersaudy1@gmail.com

Romain Kersaudy PhD Student - LAGEPP - Université Claude Bernard Lyon 1

