Predicting functional diversity and ecological strategies: near infrared spectrometry is coming to the rescue

François Vasseur & Grégory Beurier 25/12/2021

Context

A long-term goal in functional ecology: explaining and categorizing plant diversity

The 'worldwide leaf economics spectrum'

Wright et al., Nature 2004

The 'worldwide leaf economics spectrum'

Wright et al., Nature 2004

The 'C-S-R categorization' of plant ecological strategies Grime *et al.*, Nature 1974

R entropance C S

Resources

The 'C-S-R categorization' of plant ecological strategies

Grime *et al.*, Nature 1974

Resources

The 'C-S-R categorization' of plant ecological strategies

Grime et al., Nature 1974

Resources

Pierce *et al.*, Functional Ecology 2017

> Requires the measurement of multiple, laborious traits:

- Specific leaf area SLA = leaf area / leaf dry mass
- Leaf dry matter content LDMC = leaf dry mass / leaf fresh mass
- Net photosynthetic rate
- Nitrogen concentration
- etc.

> Screening many species and/or genotypes in contrasted conditions:

- In wild conditions
- In common garden
- In controlled conditions
- etc.

NIR Spectral "Collection" on Arabidopsis thaliana

Large genetic diversity

Growth conditions

Treatments

Herbivory Water deficit Hight temperature Low temperature Combined Stresses

Bolting Flowering Senescence

Morphological and physiological traits

Leaf nitrogen content (LNC) Specific leaf area (SLA) Leaf dry matter content (LDMC) Relative water content (RWC)

Stomatal density Vein density

Photosynthesis Delta13C

Metabolomic traits

Sugars Phytohormones Phenolics Flavonoids Anthocyanins

Phenological traits

Flowering time

Experiment	Growth Condition	Treatment	Spectrum number	Variable number	Variable
AraBreed Spring 2018	Outdoor	Herbivory Water deficit Combined stresses	1791	97	LNC, SLA, LDMC, RWC, delta13C, Metabolites
AraBreed Spring 2019	Outdoor	Herbivory Water deficit Combined stresses	227	2	SLA, LDMC
TE Outdoor	Outdoor	Wild	76	3	LNC, SLA, LDMC
Plast-Edge 2019	Greenhouse	Water deficit Temperature (Low and High) Combined stresses	1646	4	SLA, LDMC, RWC, Survival
Resorption 2017	Greenhouse	Control	11239	3	LNC, SLA, LDMC
Herbivory 2015	Greenhouse	Herbivory	5297	3	LNC, SLA, LDMC
CEFE 2018	Greenhouse	Control	114	4	LNC, SLA, LDMC, Leaf thickness
Arabreed PHENOPSIS 2018	PHENOPSIS	Control	745	5	LINC, SLA, LDMC,RWC, delta13C
AraBreed Pilot 2017	PHENOPSIS	Control	333	60	Metabolites
		Total Raw Spectra	21468	100	
		Total Spectra for prediction	8427		
		Total Mean Spectra	4471		

Objectives:

- **1. Predict functional traits and plant strategies**
- 2. Predict environment of origin and stress response
- **3. Predict leaf metabolites concentration**

with a single measurement!

Statistical analyses: deep learning choice

	Spectrometer x Product x Environment	Many features / Few samples	High variability / Non linearity
Traditional approaches (PI S)	A new model with each modification	Dimension reduction / selection	Spectra pre- treatments (SavGol, MSC, SNV, etc.) -
(1 LJ)			Outliers removal
	A unique model	Native overfitting management	
Neural Networks	One-shot hyperparametrization	- Data augmentation	All pre-treatments in one model - No need for pre- treatment

	Spectrometer x Product x Environment	Many features / Few samples	High variability / Non linearity
Traditional approaches (PLS)	A new model with ea modification	Dimension reduction hch / selection	Spectra pre- treatments (SavGol, MSC, SNV, etc.) - Outliers removal
Neural Networks	A unique model One-shot hyperparametrizatio	Native overfitting management - Data augmentation	All pre-treatments in one model - No need for pre- treatment
Huge Op com	en-source Ro munity impr	oom for Dedicated covements computation	Black-box

Statistical analyses: deep learning method (2D CNN)

Statistical analyses: deep learning method (1D CNN NIRS)

Statistical analyses: deep learning method (1D CNN NIRS)

Statistical analyses: deep learning method (Separable 1D CNN NIRS)

NIRS well predicts trait relationships and recapitulates plant ecological strategies

NIRS accurately predicts growth conditions (outdoor versus indoor)

				Calibration				Validation	
Туре	Name	Unit	n	Filter depth	Data augm.	RMSE	r2	RMSE	r2
<u>8</u>	Glucose	µmol/gFW	4103	1	10	30.885	0.209	7.822	0.376
	Fructose	µmol/gFW	4037	1	10	49.419	0.132	6.618	0.666
	Sucrose	µmol/gFW	3245	1	10	34.324	0.001	5.929	0.002
	Cellobiose	µmol/gFW	3168	1	10	0.312	0.683	0.066	0.741
	Arabinose	µmol/gFW	3168	1	10	0.248	0.001	0.343	0.000
	Fucose	µmol/gFW	3168	1	10	0.113	0.333	0.011	0.037
	Galactose	µmol/gFW	4037	1	10	0.920	0.698	0.785	0.394
	Isomaltose	µmol/gFW	3168	1	10	0.059	0.728	0.011	0.279
	Maltose	µmol/gFW	746	2	1	0.190	0.000	0.064	0.002
sugars	Mannose	µmol/gFW	3168	1	10	1.200	0.138	0.104	0.491
	Raffinose	µmol/gFW	3168	1	10	0.084	0.996	0.821	0.599
	Rhamnose	µg/gFW	3168	1	10	67.786	0.000	95.561	0.034
	Ribose	µmol/gFW	576	2	1	0.274	0.008	0.143	0.003
	Melezitose	µmol/gFW	4037	1	10	0.024	0.578	0.012	0.394
	Melibiose	µmol/gFW	3168	1	10	0.289	0.825	0.233	0.745
	Palatinose	µmol/gFW	590	2	1	0.851	0.020	0.084	0.026
	Inositol	µmol/gFW	3168	1	10	4.997	0.115	0.589	0.447
	Trehalose	µmol/gFW	576	2	1	0.583	0.003	0.085	0.003
	Xylose	µmol/gFW	3168	1	10	0.235	0.150	0.046	0.107

		Unit	-	Calibration				Validation		
Туре	Name		n	Filter depth	Data augm.	RMSE	r2	RMSE	r2	
	SA	ng/gFW	3773	1	10	834.472	0.001	495.571	0.235	
	JA	ng/gFW	4191	1	10	123.582	0.898	170.864	0.457	
hormones	ABA	nmol/gFW	762	2	1	0.053	0.098	0.043	0.272	
	IAA	nmol/gFW	4191	1	10	0.014	0.989	0.073	0.399	
	CMLX	nmol/gFW	4191	1	10	39.066	0.012	34.951	0.089	

					Calibr	ation		Valida	tion
Туре	Name	Unit	n	Filter depth	Data augm.	RMSE	r2	RMSE	r2
	Quercetin glu	Peakarea/mg	4158	1	10	24.635	0.936	46.410	0.443
	Apigenin rutir	n Peakarea/mg	4158	1	10	207.552	0.968	843.447	0.319
	Caffeic acid	Peakarea/mg	4158	1	10	28.364	0.151	0.920	0.410
	Chlorogenic	aPeakarea/mg	4158	1	10	1.282	0.998	14.293	0.740
	Cyanidin rha	nPeakarea/mg	4158	1	10	245.707	0.972	819.908	0.548
	Cyanidin sop	Peakarea/mg	4158	1	10	50.168	0.995	373.988	0.356
	Dihydro caffe	Peakarea/mg	4158	1	10	3.291	0.987	8.470	0.866
	Citrat	Peakarea/mg	4158	1	10	309.804	0.987	1664.348	0.560
	Fumarat	Peakarea/mg	4158	1	10	56.591	0.965	163.304	0.198
other secondary metabolites	Malat	Peakarea/mg	4158	1	10	116.487	0.989	799.920	0.184
	Succinat	Peakarea/mg	4158	1	10	14.521	0.948	45.249	0.185
	Kaempherol	gPeakarea/mg	4158	1	10	218.594	0.957	508.803	0.195
	Kaempherol	r Peakarea/mg	4158	1	10	174.741	0.996	1554.556	0.618
	Kaempherol	xPeakarea/mg	4158	1	10	164.575	0.986	747.392	0.583
	mCoumaric a	Peakarea/mg	4158	1	10	111.729	0.814	143.725	0.037
	pCoumaric a	Peakarea/mg	4158	1	10	1.352	0.917	1.318	0.492
	Pelargonidin	Peakarea/mg	4158	1	10	7.873	0.988	33.253	0.674
	Pelargonidin	Peakarea/mg	4158	1	10	30.145	0.990	211.416	0.518
	Prenyl naring	Peakarea/mg	4158	1	10	10.998	0.917	14.790	0.632

Conclusions

1. Predict functional traits and plant strategies?

--> yes

2. Predict environment of origin and stress response?

--> yes

3. Predict leaf metabolites concentration?

--> very variable

Acknowledgments

Annexes

Comparing CNN and PLS approaches

		PL	S		CNN	
	transfo	ncomp	RMSE	r ²	RMSE	r ²
LNC (%)	ga1msc	6	0.80	0.83	0.52	0.93
δ13C	snvga1	4	0.87	0.65	0.61	0.83
Plant growth rate (mg d-1)	ha2ha2	4	0.00	0.51	0.00	0.57
R score (%)	mscha1	5	10.08	0.59	4.79	0.87
Fructose	ga1	31	33.67	0.11	6.62	0.67
Maltose	ga1	3	53.86	0.02	0.06	0.00
Mannose	ga2sg1	10	0.16	0.19	0.10	0.49
Ribose	sg1ga3	16	38.34	0.07	0.14	0.00
Arabinose	ga1snv	3	309.23	-0.01	0.34	0.00
JA	snvga1	4	0.98	0.15	170.86	0.46
Glucoraphenin	ga2sg1	7	0.65	0.70	0.61	0.75
Hexyl glucosinolate	sg1ga3	14	54.04	-0.22	45.55	0.00
Butyl glucosinolate	ga4sg4	13	4.12	0.46	3.17	0.56
ХЗМТР	ga2ga1	3	41.90	-0.01	7.90	0.74
Dihydro caffeyol glucuronide	ga1snv	5	12.06	0.81	8.47	0.87

Preliminary investigation of spectra: PCA on spectrum values

Preliminary investigation of spectra: PCA on spectrum values

Preliminary Investigation of Spectra: Remove outliers on mean

spectra

Savitzky-Golay smoothing filter (SG) **SVN-SG Spectra** n = 2939 1000 1500 2000 2500 Wavelengths(nm)

Every data point of the spectrum is subtracted from the mean and divided by the standard deviation: **normalization of spectra** SG smoothes signals and calculates derivatives: **enhance signal properties, and suppress unwanted spectral features** that arise due to nonideal instrument and sample properties