
APPORT DE LA SPECTROSCOPIE PROCHE INFRAROUGE POUR LES THÉMATIQUES DE RECHERCHES DE L'ESSA FORÊTS À MADAGASCAR

RAMANANANTOANDRO Tahiana, RASOAMANANA Lalaina Patricia,

PRESENTATION DU LABORATOIRE

UNIVERSITE D'ANTANANARIVO

- × 32 000 étudiants
- × 400 étudiants étrangers
- * 1 500 staffs administratifs et techniciens
- 850 professeurs
- 2500 enseignants

Université d'Antananarivo

Faculté de Ddroit

Faculty de l'Economie, Gestion et Sociologie

Faculté des Lettres et Sciences Humaines

5 Facultés3 Ecoles

Faculté des Sciences

Faculté de Médecine

Ecole Polytechnique

Ecole des Sciences Agronomiques

Ecole Normale Supérieure

ECOLE SUPERIEURE DES SCIENCES AGRONOMIQUES

× 6 departements:

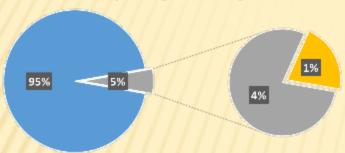
- + Agriculture tropicale et développement durable
- + Agroecologie, biodiversité et changement climatique
- + Agro-management
- + Industrie Agro Alimentaire
- + Sciences Animales
- + Foresterie et Environnement

ESSA-FORÊTS (DEPARTMENT OF FORESTRY AND ENVIRONMENT)

Formation et recherche sur la gestion des ressources naturelles

5 Unités de Formation et Recherche

- Sylviculture et gestion des forêts
- Ecologie et biodiversité
- Eau et Gestion du sol
- Economie et politique de gestion de l'environnement
- Sciences du Bois



PROBLEMATIQUE

PROBLÉMATIQUE GÉNÉRALE

Les espèces ligneuses malgaches

- Caractéristiques inconnues
- Caractéristiques connues
- Localement utilisées en considérant toutes les formes d'utilisation
- + 4000 espèces
- Exploitation sélective des essences traditionnelles
- Sous-exploitation des essences méconnues
- Connaître les autres essences pour une utilisation rationnelle et durable des ressources forestières

 Mesures propriétés selon les normes = destructives + prend beaucoup de temps

Demande croissante Coupe illicite

Manque de contrôle au niveau des forêts et des ports
Incapacité à discriminer efficacement et rapidement

150 millions \$à Madagascar

EQUIPEMENTS SPIR

EQUIPEMENTS SPIR

2015

MicroNIR Viavi 1700 (Viavi Solution-Milpitas, CA, USA) Résolution spectrale : 6,19 nm et Longueur d'ondes : 950-1650 nm 2019

DLP® NIRscan™ Nano(Texas instruments Inc.,Texas, USA)
Résolution spectrale: 10 nm et
Longueur d'ondes: 900-1700 nm

2020

Bruker MPA II
Résolution: 1nm

Longueur d'ondes: 800nm - 2500nm

THEMATIQUES DE RECHERCHE FIT ETUDIANTS ENGAGES

2013 : Estimation des propriétés physico-mécaniques du bois de Liquidambar

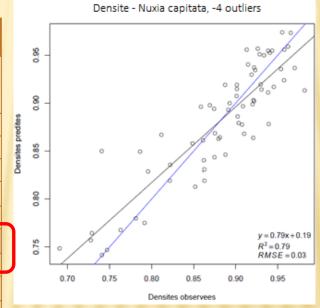
Herizo RAKOTOVOLOLONALIMANANA

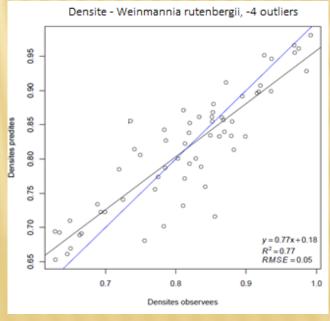
Propriétés	Traitement	R²c	RMSEC	R ² cv	RMSECV	RPD
PSF (Point de Saturation de Fibres)	Dérivée seconde	0,92	0,55	0,84	0,78	3,23
Infradensité	Derivee seconde	0,88	0,011	0,83	0,013	2,92
Module d'élasticité (EL)	Dérivée	0,82	1 033	0,80	1 117	2,58
	première					
Module de rupture en compression		0,57	3,24	0,49	3,57	1,75
axiale (C)						
Module de rupture en flexion	Dérivée seconde	0,70	10,97	0,47	14,61	1,62
longitudinale (σ _F)						
Dureté MONNIN		0,61	0,34	0,53	0,37	1,84
Retrait radial (Rr)	Dérivée	0,58	0,31	0,42	0,37	1,56
	première					
Retrait tangentiel (Rt)	Dérivée seconde	0,65	0,44	0,49	0,53	1,85

R2c : coefficient de détermination en calibration

R2cv : coefficient de détermination en validation croisée

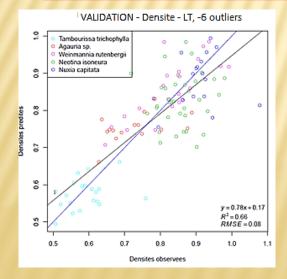
RMSEC : racine carrée de l'erreur de calibration ou « Root Mean Square Error of Calibration »
RMSECV : racine carrée de l'erreur de la validation croisée ou « Root Mean Square Error of cross validation »

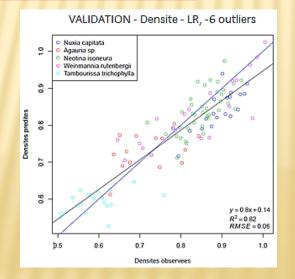


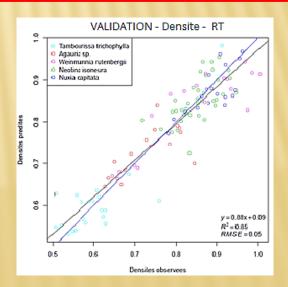

2017 : Etude des propriétés physico-mécaniques de 5 bois de forêts naturelles malgaches *Mikala ANDRIANINDRIANA*

Modèles monospécifiques

Densité									
Espèce	N.E.	Prétraitement	N.O.	LV	LV	RMSEC	RMSECV	R ² CV	RPD
	$^{\prime \prime \prime \prime }$	//////		(DW)	H	IIII	IIII	Ш	
Agauria sp.	61	-Log(x)	0	4	3	0.049	0.051	0.56	1.42
			3	3	3	0.049	0.051	0.56	1.40
Neotina	133	DT+SG-2	0	1	3	0.037	0.039	0.51	1.34
isoneura			3	1	4	0.036	0.038	0.55	1.38
Nuxia	71	SG-2	0	3	4	0.044	0.049	0.64	1 48
capitata			4	3	4	0.032	0.039	0.79	1.77
Tambourissa	64	-l og(x)	0	4	4	0.046	0.048	0.48	1 29
trichophylla			3	5	4	0.032	0.035	0.58	1.38
Weinmannia	66	SNV+SG-2	0	4	3	0.068	0.075	0.63	1 44
rutenbergii			4	5	3	0.047	0.052	0.77	1.88




2017 : Etude des propriétés physico-mécaniques de 5 bois de forêts naturelles malgaches *Mikala ANDRIANINDRIANA*


Modèles multispécifiques

Den	Densité (Validation croisée)										
Plan	Prétraitement	N.E.	N.O.	σ	LV	LV	LV	RMSEC	RMSECV	R ² CV	RPD
				(DW)	(RMSECV)						
LT	DT+SG-1	218	0	0.130	8	12	4	0.062	0.062	0.78	2.08
			6	0.126	5	12	6	0.052	0.057	0.83	2.23
LR	DT+SG-1		0	0.130	8	17	4	0.069	0.071	0.72	1.84
			6	0.125	8	18	8	0.055	0.058	0.81	2.16
ΝI	3G-2		Ū	0.129	11	10	9	0.050	0.00	0.62	2.15
		III	2	0.127	11	15	9	0.048	0.053	0.86	2.42

Densi	Densité (Validation indépendante)									
Plan	Prétraitement	N.E.	N.O.	σ	RMSEP	R ² P	RPD			
LT	DT+SG-1	109	0	0.129	0.081	0.63	1.6			
			6	0.129	0.077	0.66	1.67			
LR	DT+SG-1		0	0.127	0.059	0.78	2.14			
			6	0.127	0.056	0.82	2.29			
RT	SG-2		0	0.127	0.049	0.85	2.62			
			2	0.127	0.051	0.84	2.48			

2018: Elaboration d'un modèle SPIR multispecifique pour prédire 7 propriétés chimiques du bois d'eucalyptus Andriambelo Radonirina RAZAFIMAHATRATRA

Eucalyptus camaldulensis	Senegal
Eucalyptus robusta	Madagascar
Eucalyptus urophylla	Congo, Brazil
E. urophylla × E. pellita : E. uropellita	Congo
E. urophylla × E. grandis : E. urograndis	Brazil, Congo

Based on 367 samples, age 2-35 years.

Appareil Bruker Vector

NIR model calibration

		Cross	validation	Test set validation		
Properties	%SEL	R ² cv	%RMSECV	R ² p	%RMSEP	
Extractives	11,6%	0,86	19,7%	0,79	23,6%	
KL	2,9%	0,92	3,5%	0,80	5,7%	
ASI.	7,6%	0,80	15,2%	0,72	18,1%	
SG	3,3%	0,89	8,2%	0,85	9,5%	
Holo	3,5%	0,82	3,8%	0,67	5,5%	
Alpha	3,8%	0,74	4,5%	0,66	7,3%	
Hemi	5,3%	0,73	6,4%	0,67	8,0%	

LK : Lignine de Klason

ASL: Lignine Acido Soluble

SG: Rapport entre Monomères Syringyl et Guaiacyl

DISCRIMINATION DES ESPECES

2018 : Discrimination des espèces de bois précieux de Madagascar

Andry Clarel RAOBELINA

4 espèces : Dalbergia abrahamii, Dalbergia chlorocarpa, Dalbergia greveana, Dalbergia pseudobaronii

Paramètres		% Erreur de Classificati					
Type éch	Partie	Prétraitement	Nb_VD	Calibration	Val_Crois ée	Val_ind	
Disque	Aubier	Aucun	3	39,1	60,8	40	
Carotte	Aubier	Der2 (W=29)	5	23	38,4	36,3	
Carotte	Duramen	Der1 (W=21)	7	0	37,5	20	
Carotte+disq	Aubier	Aucun	3	35,8	60,3	58,3	

DISCRIMINATION DES ESPECES

2020 : Comparaison de la potentialité d'un NIRscan Nano Texas Instrument (Dallas TX, USA) par rapport au VIAVI MicroNIR 1700 (JDSU, Santa Rosa, CA, USA)

Lalaina Patricia RASOAMANANA; Tiavina RANDRIAMBININTSOA

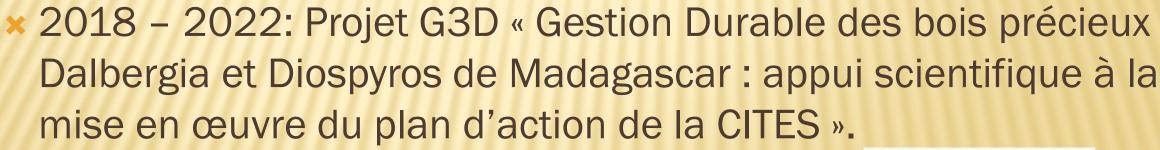
	Spectromètre	Région spectrale (nm)	Résolution (nm)
0	VIAVI MicroNIR 1700	908 - 1676	6,1
	DLP NIRscan Texas Instrument	900 -1700	10

Espèces	Modèles	Prétraitements	%En
D.chlorocarpa	PLSDA	Der2 (W= 9	8,3
D.purpurascens	(NanoNIR)	points)	
D.orientalis	PLSDA	Der1 (W=5	
D.onemans	(MicroNIR	,	16,6
	1700)	points)	

PARTENARIATS ET PROJETS

PARTENARIATS ET PROJETS

× 2021 – 2022: Projet FID2D: Field Identification of Diospyros


and Dalbergia of Madagascar

PARTENARIATS ET PROJETS

* 2016 - 2017 : Projet SPIRMADBOIS «Strengthening Malagasy capacities for wood characterization and identification of indigenous forest species».

* 2013 – 2016: Projet CAPES Agropolis « Impact of water constraint in relation to the mineral element intake on Eucalyptus wood properties and xylem genome expression

CAPES BRESIL

Encore prêts pour d'autres aventures !!!!

MERCIII