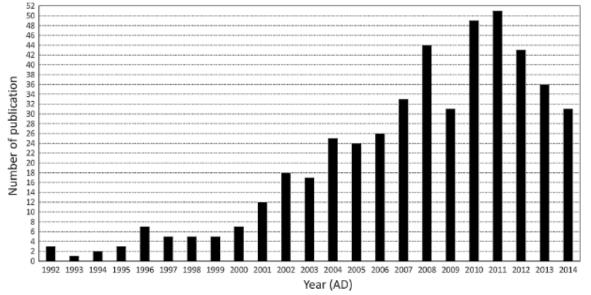


22ème rencontre héliospir

Correction de l'effet de la variation de l'humidité du bois sur l'étalonnage des modèles de discrimination SPIR : cas de trois espèces de *Dalbergia* de Madagascar

RANDRIAMBININTSOA Tiavina,
RAOBELINA Andry Clarel, CHAIX Gilles,
RAZAFIMAHATRATRA Andriambelo
Radonirina, Ramananantoandro Tahiana

I. CONTEXTE ET PROBLEMATIQUE


J Wood Sci (2015) 61:213-220 DOI 10.1007/s10086-015-1467-x

REVIEW ARTICLE

A review of recent application of near infrared spectroscopy to wood science and technology

Satoru Tsuchikawa · Hikaru Kobori

Nombre de publications sur le NIRS appliqué au bois, (Tsuchikawa and Satoru, 2015)

- Utilisation de SPIR avec la chimiométrie pour des analyses quantitatives et qualitatives (Tsuchikawa and Satoru, 2015)
 - (i) Prédiction des propriétés du bois (Razafimahatratra, 2017)
 - (ii) Discrimination des espèces et des origines géographiques (Snel et al., 2018, Raobelina et al., 2021)
- Très peu d'études effectuée sur l'utilisation de l'outil dans des conditions expérimentales non contrôlées/in situ

I. CONTEXTE ET PROBLEMATIQUE

- Conditions de mesure différents au labo et sur terrain.
- grandeurs d'influences non contrôlables sur terrain (Température du milieu, humidité relative de l'air)
- Chimie du bois et réponse des spectromètre sensibles à la variation de l'humidité du bois
- Modèle étalonné au laboratoire n'est pas directement applicables pour des identifications sur le terrain → Problème de robustesse
- Question de départ: Est-t-il possible de corriger l'effet de la variation de l'humidité du bois sur l'étalonnage Des modèles de discrimination de trois espèces de Palissandre de Madagascar
- Objectif: Comparer plusieurs approches chimiométriques de correction des effet des grandeurs externes pour améliorer la robustesses des modèles de discrimination de 3 espèces de palissandres malgaches

II. MATERIELS ET METHODES/ Collecte des microcarottes et travaux de laboratoire

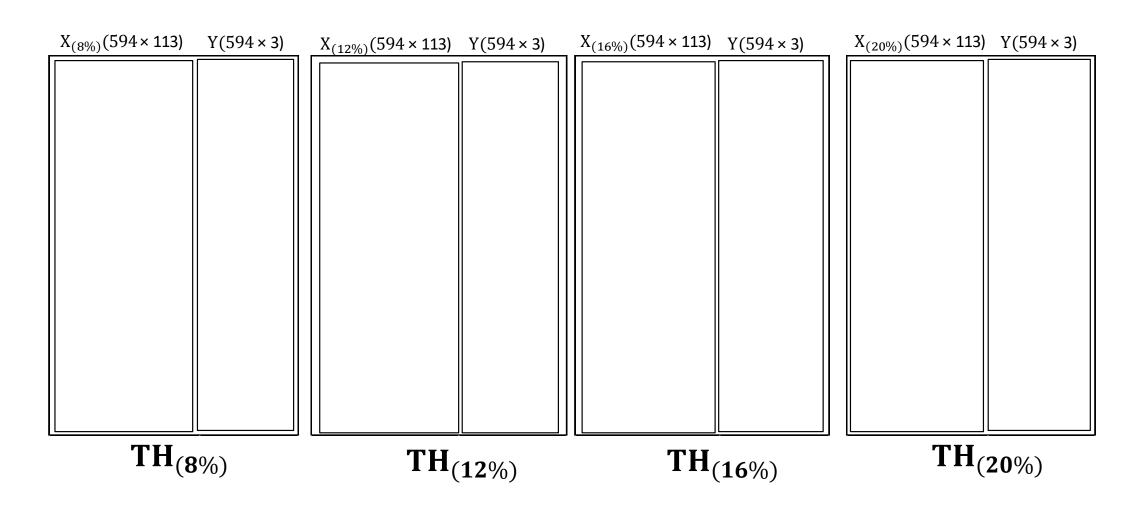
II.1/ Collecte des échantillons de carottes

- Collecte de 99 microcarottes de bois (Ø 0,5 cm)
- Un carotte par arbre
- Identification par les taxonomistes de la MBG Madagascar et MNHN de France

Espèces	Nombre de microcarottes
D. oriantalis	48
D. purpurascens	33
D. chlorocarpa	18

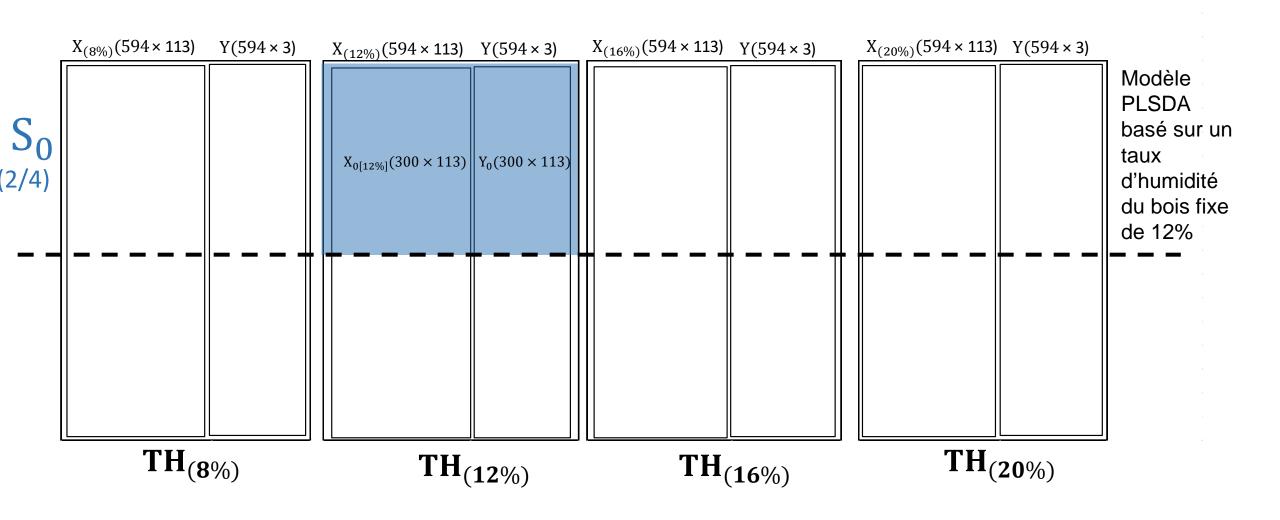
II.2/ Travaux de laboratoires

- Stabilisation des carottes à 4 états d'humidité $TH_{(\%)}$ =[8, 12, 16, 20]
- Mesure de 6 spectres sur la partie duramen de chaque carottes pour chaque états d'humidité en utilisant un VIAVI MicroNIR (900 nm – 1750 nm; 6,1 nm)
- Spectres acquis sur des faces aléatoires (LT, RT ou LR)
- 594 × 4 états d'humidités = 2376 spectres

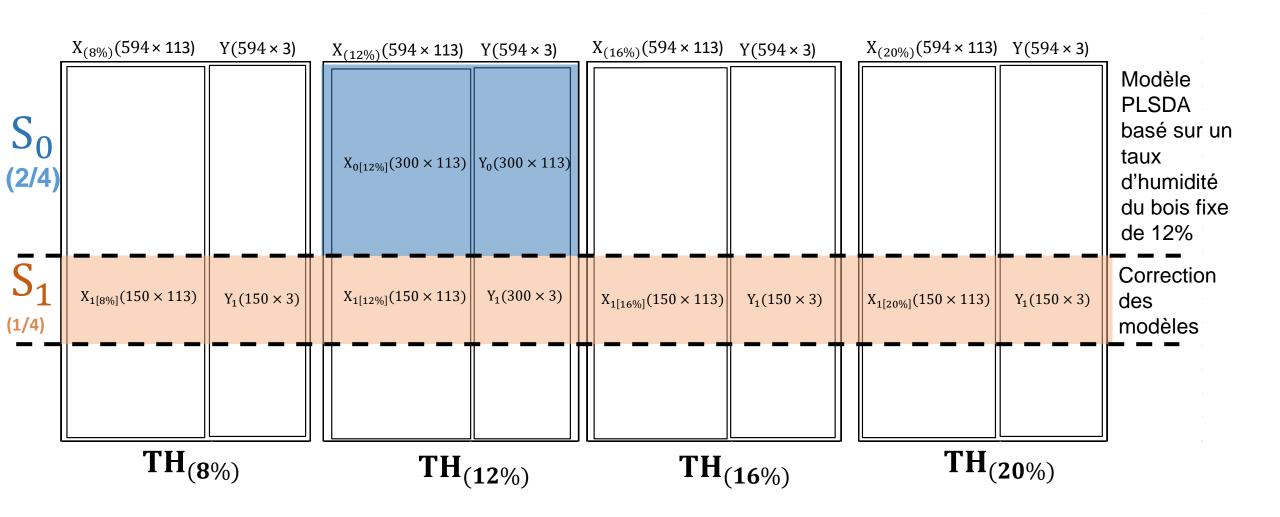

II.3/ Traitement des données II.3.1/ Analyse exploratoire

- Observation des spectres
- Analyse en Composante Principale
 - Groupement des spectres selon le taux d'humidité du bois
 - Groupement des spectres selon les espèces
 - Identification des outliers spectraux

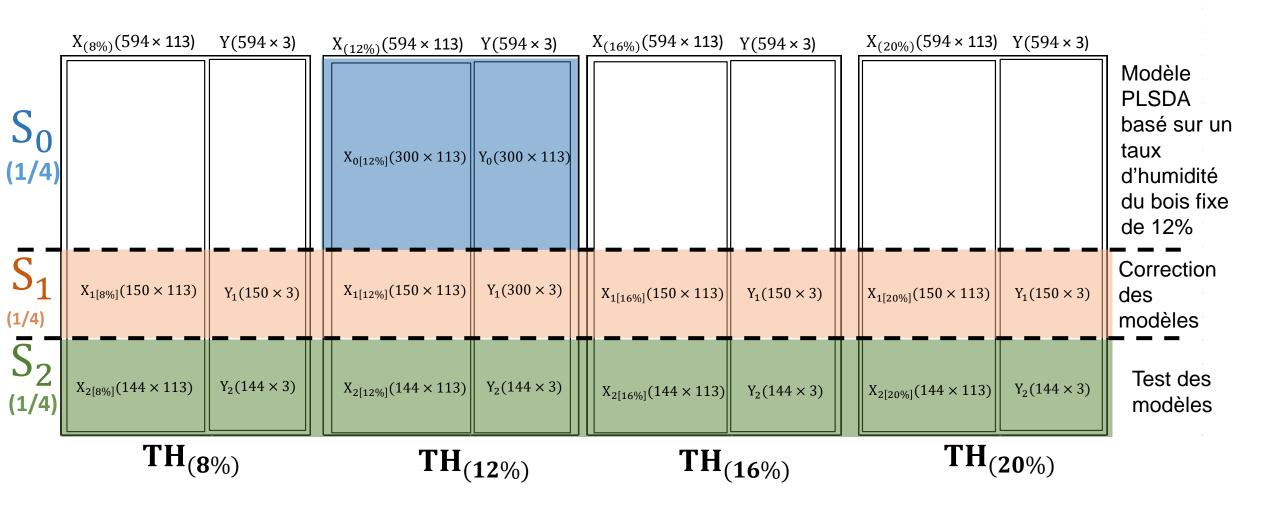
II.3/ Traitement des données


II.3.2/ Partage des données en trois lots

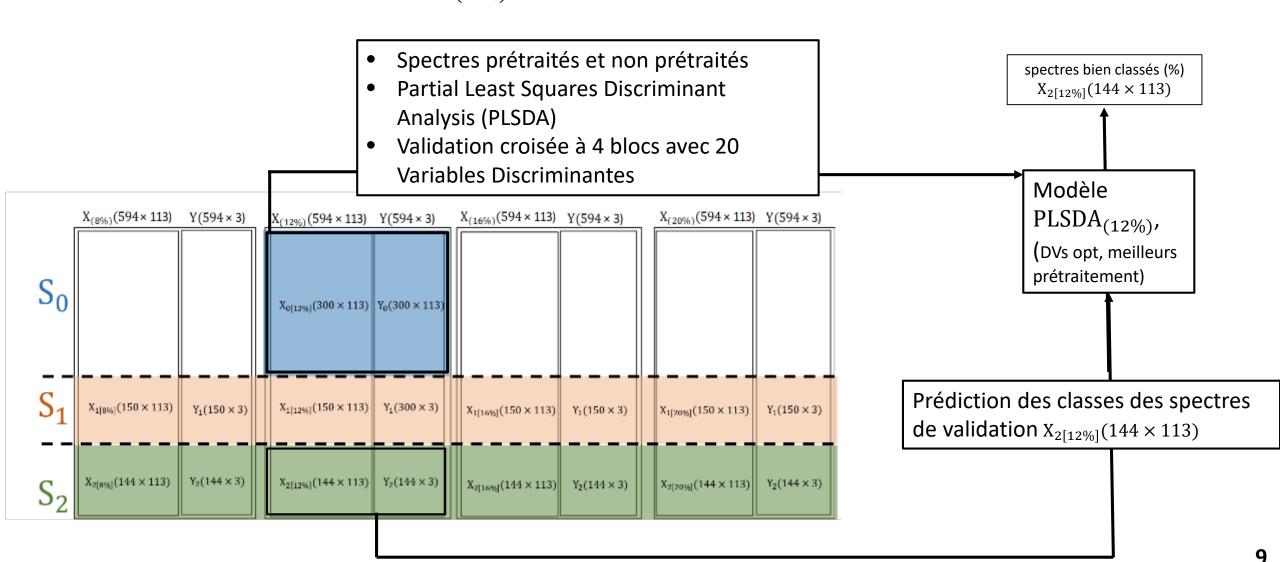
II.3/ Traitement des données


II.3.2/ Partage des données en trois lots (aléatoire)

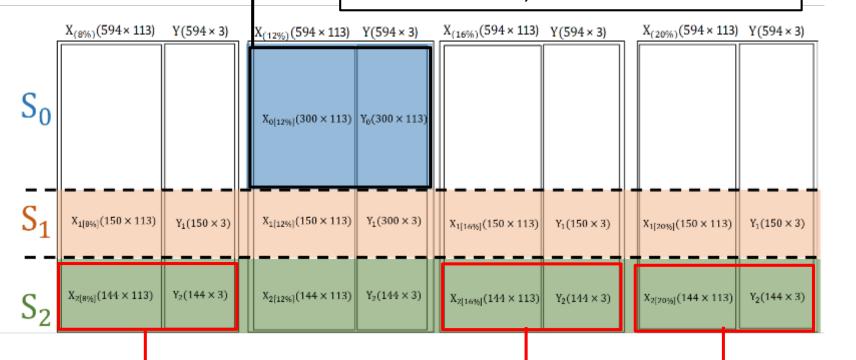
II.3/ Traitement des données


II.3.2/ Partage des données en trois lots (aléatoire)

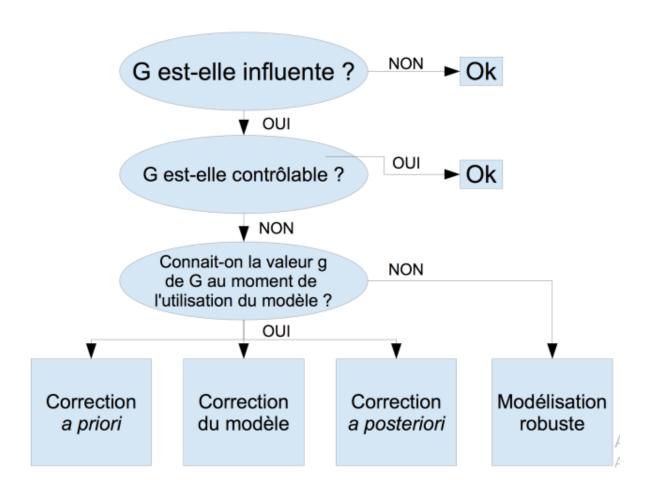
II.3/ Traitement des données


II.3.2/ Partage des données en trois lots (aléatoire)

II.3/ Traitement des données


II.3.3/ Etalonnage du modèle $PLSDA_{(12\%)}$ à partir des spectres mesurés à TH(%) =12%

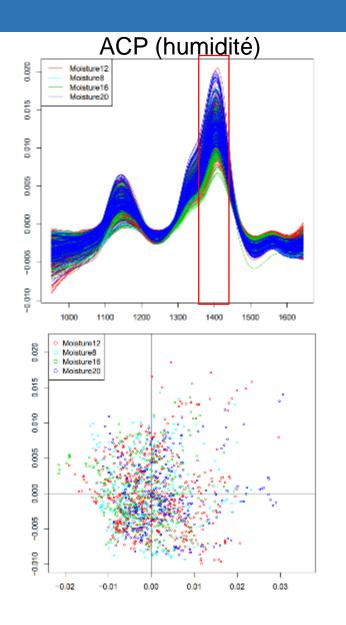
- Spectres prétraités et non prétraités
- Partial Least Squares Discriminant Analysis (PLSDA)
- Validation croisée (20 Variables Discriminantes)

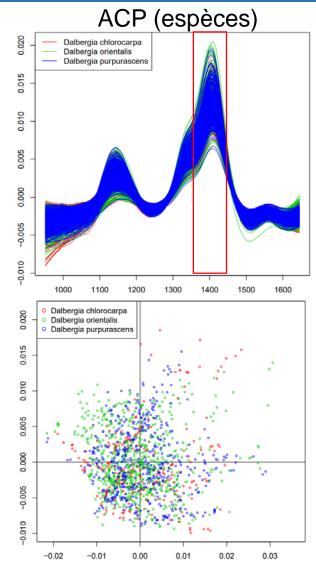


spectres bien classés (%) $X_{2[8\%]}(144 \times 113)$ spectres bien classés (%) $X_{2[16\%]}(144 \times 113)$ spectres bien classés (%) $X_{2[20\%]}(144 \times 113)$ Modèle PLSDA_(12%), (DVs opt, meilleurs prétraitement) Prédiction des classes des spectres de validation $X_{2[8\%]}(144 \times 113)$, , $X_{2[16\%]}(144 \times 113)$, $X_{2[20\%]}(144 \times 113)$,

II.3/ Traitement des données II.3.4/ Correction des modèles

- Utilisation de trois méthodes selon deux hypothèses:
 - 1) la valeur du taux d'humidité du bois est connue au moment de la mesure: Correction à priori
 - 2) La valeur du taux d'humidité du bois n'est pas connue au moment de la mesure: Model Update, Orthogonalisation (EPO)




Stratégie adopter vis-à-vis d'un grandeur d'influence (Roger et Boulet, 2016)

III.1/ Analyse exploratoire

- Spectres prétraités avec Lissage suivi d'une dérivation première [SG1 (w = 13 points)]
- Grande variation des absorbances autour de la bande d'absorption de l'eau à 1400 nm
- Difficulté de séparer les spectres selon
 l'humidité et selon les espèces dans le plan
 PC1-PC2

III.2/ Analyse discriminante

III.2.1/ Etalonnage du modèle $PLSDA_{(TH=12\%)}$ et test du modèle sur des spectres perturbés

Performance en VC du modèle $PLSDA_{(TH=12\%)}$ en fonction des prétraitements

Prétraitements	Nombre de VDs	Spectres bien classés (%)
Aucun	16	91,6
VSN	15	91,5
SG ₁ (W=13)	11	91
$SNV + SG_2$	15	90,6
SNV	15	89,6
SNV + Dt	13	89,4
$SNV + SG_1$	14	89,2
SG ₂ (W=13)	11	89
$Dt + SG_2$	18	87,5
Dt +SG ₁	16	86,4
Dt	16	85,7

Pourcentage global de spectres bien classés issu de l'application du modèle $PLSDA_{(TH=12\%)}$ pour prédire $X_{2(TH=8\%)}$, $X_{2(TH=12\%)}$, $X_{2(TH=16\%)}$ et $X_{2(TH=20\%)}$

jeux de données de validation

X _{2(Th%=8%)}	X _{2(Th%=12%)}	X _{2(Th%=16%)}	X _{2(Th%=20%)}
65,3	81,9	59,7	40,9

• Performance du modèle *PLSDA*_(TH=12%) diminue avec le changement d'humidité des carottes

III.2/ Analyse discriminante

III.2.1/ Etalonnage du modèle $PLSDA_{(TH=12\%)}$ et test du modèle sur des spectres perturbés

Matrice de confusion issu de la prédiction de spectres de validation $X_{2(TH=12\%)}$ (a) et $X_{2(TH=20\%)}$ (b)

jeux de données de validation

X _{2(Th%=8%)}	X _{2(Th%=12%)}	X _{2(Th%=16%)}	X _{2(Th%=20%)}	
65,3	81,9	59,7	40,9	

(a) $PLSDA_{(Th\%=12\%)}$ testé $X_{2(TH=12\%)}$

Classe réelle Classe Prédite	D. chlorocarpa	D. orientalis	D. purpurascens	% individus bien classés
D. chlorocarpa	15	2		75,0
D. orientalis	6	65	10	91,8
D. purpurascens	3	5	38	75,0

(b) $PLSDA_{(Th\%=12\%)}$ testé sur $X_{2(TH=20\%)}$

Classe réelle Classe Prédite	D. chlorocarpa	D. orientalis	D. purpurascens	% individus bien classés
D. chlorocarpa	0			0,0
D. orientalis	4	39	28	58,3
D. purpurascens	20	33	20	25,0

III.2/ Analyse discriminante III.2.2/ Correction des modèles

Pourcentage global d'individus bien classés issu de la prédiction des spectres de validation $X_{2(TH=8\%)}$, $X_{2(TH=16\%)}$ et $X_{2(TH=20\%)}$ à partir des modèles PLSDA corrigés

Individus bien classés en Validation Indépendante (%)

Hypothèses	Méthode	Modèle	$X_{2(TH\%=8\%)}$	$X_{2 (TH\% = 16\%)}$	$X_{2}_{(TH\%=20\%)}$
TH _(%) fixe à 12%	PLSDA	PLSDA _(TH=12%)	62,5	50,0	33,3
TH _(%) variable, connu	PDS	PLSDA _(PDS)	58,3	41,6	66,7
TU variable non connu	Model Update	PLSDA _(M.Update)	70,8	75,5	70,8
$\mathrm{TH}_{(\%)}$ variable, non connu	EPO	PLSDA _(EPO)	66,7	70,8	75,0

- Les résultats de classification sont plus robustes par rapport à la variation du taux d'humidité issue des deux méthodes EPO et Model Update
- Performances globales proches, autour de 70% 75% d'individus bien classés en validation indépendante

III.2/ Analyse discriminante III.2.2/ Correction des modèles

Matrice de confusion issu de la prédiction de spectres de validation $X_{2(TH=20\%)}$ à partir des modèles PLSDA corrigés par EPO(a) et Model Update(b)

(a) $PLSDA_{(EPO)}$ testé $X_{2(TH=20\%)}$

Classe réelle Classe prédite	D. chlorocarpa	D. orientalis	D. purpurascens	% individus bien classés
D. chlorocarpa	7	4	5	25,0
D. orientalis	17	53	6	83,0
D. purpurascens		14	37	75,0

(b) PLSDA_(M.Update) testé X_{2(TH=20%)}

Classe réelle Classe prédite	D. chlorocarpa	D. orientalis	D. purpurascens	% individus bien classés
D. chlorocarpa	5			25,0
D. orientalis	10	65	11	91,8
D. purpurascens	9	7	37	75,0

IV. CONCLUSION ET PERSPECTIVES

- Innovation: très peu d'études sur la correction des modèles de classification dans la littérature, quelques unes sur la régression
- Résultats prometteurs (performance autour de 70%) dans une finalité de s'affranchir de la variation du taux d'humidité du bois pour des identification in situ
- Perspectives
- Enrichissement de la base de données spectrales par des spectres prises à des humidités au-delà de TH=20% (moyen terme)
- Tester le modèle corrigé sur des échantillons de bois sur le terrain (bois saisis, bois stockés) (long terme)

Merci de votre aimable attention

Remerciements à :

