

RoBoost-PLSR : A new Robust PLS regression method

Maxime Metz; Florent Abdelghafour; Jean-Michel Roger; Matthieu Lesnoff

Joint Research Unit

ITAP

Technologies & methods for the agriculture of tomorrow

Summary

1. Introduction

- a. Robustness
- b. Robust PLS methods

2. Theory

- a. RoBoost-PLS regression
- b. Pros and Cons

3. Materials and Methods

- a. Methods
- b. Data
- 4. Results and discussions
- 5. Conclusion

a. Robustness

INRA

a. Robustness

INRA

a. Robustness

INRA

a. Robustness

INRAe

a. Robustness

a. Robustness

Main hypothesis in Robust methods :

- Robust methods assume that the largest mass of data is X0.
- The learning database is polluted

Main difficulties in Robust methods :

Find a good measurement to highlight the outliers (especially when estimating leverage points)

b. Robust PLS methods in literature

Wakelinc et Macfie, « A Robust PLS Procedure »

Cummins , « Iteratively reweighted partial least squares: A performance analysis by monte carlo simulation »

Pell, « Multiple Outlier Detection for Multivariate Calibration Using Robust Statistical Techniques »

Griep et al., « Comparison of Semirobust and Robust Partial Least Squares Procedures »

Serneels et al., « Partial Robust M-Regression »;

Gil et Romera, « On Robust Partial Least Squares (PLS) Methods »

Møller, Frese, et Bro, « Robust Methods for Multivariate Data Analysis »

Hubert et Branden, « Robust Methods for Partial Least Squares Regression ».

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

Calculation of a PLS model with a defined **x** latent variables then weighting according to the Y residuals and leverage.

Weighting X and Y matrices

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

Calculation of a PLS model with a defined **x** latent variables then weighting according to the Y residuals and leverage.

INRA

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

INRA

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

INRA

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

INRA

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

INRA@

b. Robust PLS methods in literature

PRM (Partial Robust M-regression) :

INRA@

a. RoBoost-PLS

Weighted PLSR model with 1 LV

INRA

a. RoBoost-PLS

a. RoBoost-PLS

b. Pros and Cons

Pros		Cons	
- Facil lever - Appr	itates the weighting of rage point rehends X-residuals	-	B-coef not observable Scores : non-orthogonal

INRA@

b. Pros and Cons

The distance to the center of the scores is easy to define for one dimension

a. Methods

4 different methods : PLSR with outliers in the training set PLSR without outliers in the training set PRM with outliers in the training set RoBoost-PLSR with outliers in the training set

a. Methods

4 different methods : PLSR with outliers in the training set PLSR without outliers in the training set PRM with outliers in the training set RoBoost-PLSR with outliers in the training set

Reference

b. Data set

Simulated data set

INRA

RoBoost-PLS : robust PLS regression method inspired from boosting principles

INRA

comp1(94.61 %)

a. Simulated data set

a. Simulated data set

INRAØ

a. Simulated data set

INRAO

b. Real data set

b. Real data set

INRA

b. Real data set

b. Real data set

INRAe

b. Real data set

b. Real data set

INRAØ

5. Conclusion

The results highlighted the good predictive capacity of the RoBoost-PLSR method, however some points need to be developed :

- Weight functions
- Weight optimisation
- Weight combinations
- Development of metrics for weighting
- The presence of outliers in the test
- Interpretation of the meta-model

Email : maxime.metz@inrae.fr

