
Use of convolutional neural network 
to predict yam (D. alata) tuber 

amylose content from near infrared 
spectra

June 2021

Houngbo M. E.1, Desfontaines L.2, 

Mestres C.3, Davrieux F.3, Meghar

K.3, Arnau G.1, Irep JL.4, Marie-

Magdeleine C.5, Rouan L.1, Beurier 

G.1, Cornet D.1

1. CIRAD UMR AGAP 2. INRAE UR ASTRO

3. CIRAD UMR QUALISUD 4. INRAE UE PEYI

5. INRAE URZ



Context
• Yam importance

• 4th most cultivated 

root tuber

• Cultivate in 

intertropical zones

• 60 million people’s 

staple food 

• Consumption mode

• Boiled

• Pounded

• Varieties from breeding programmes not widely 

adopted because quality not acceptable
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Context
• Yam composition: starchy (80% of dry matter)

• Amylose & Amylopectin

• Affects starch viscosity and friability of yam products

• NIRS can help to predict tuber quality

• Amylose is difficult to predict by NIRS for RTB

• Mostly C-H bonds (C6H10O5)n
• Multiple wavelengths involved and not well known

• Two unsuccessful attempts to predict amylose 

content using NIRS with PLS for yam

• R²=0,27 (Alamu et al., 2019) 

• R²=0,18 (Lebot and Malapa, 2009)
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Context
• PLS: Partial Least Squares

• “Linear”

• Loss of information

• Reduction of dimensions (loss of part of the information: 1050 

variables -> 2-48 components)

• Applies only 1 pretreatment combination (optimal but 

incomplete) => loss of noise but also loss of information

• Sensitive to outliers and especially spectral outliers

• Spectral => arbitrary suppression of spectra based on distances 

(Euclidean, Mahalanobis...) unrelated to the information carried

• Risk of loss of information
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Context

• AI: Artificial Intelligence / DL: Deep learning

• Management of overfitting designed in advance as 

inherent to DL methods

• Noise is information: all features and spectral outliers are 

useful

• Data augmentation is more efficient as the introduction 

of noisy spectra does not "harm" the performance of the 

algorithm

• No need to choose between combinations of 

pretreatments (APA)
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Context
• CNN: Convolutional Neural Network

• Reduce noise due to measurement conditions of spectra 

(convolutional layer acts like super-pretreatment)
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Methods
• Sample preparation

• 21 genotypes (D. alata)

• Peeled tubers, dried, ground, sieved 

• 93 samples

• Reference measurements of 

amylose (INRAE, UR Astro)

• Colorimetry adapted from ISO-6647 

and calibrated with DSC 

measurements

• NIRS measurement

• FOSS NIRsystems 6500 (INRAE, URZ)

• 1050 absorbance values from 400 to 

2498 nm

• 2 repetitions per sample (186 spectra) 7/12



Methods
• Raw spectra +12 pretreatments used (gaussian, 

SavGol, MSC, SNV, Haar…) and their combination 

two by two => 157 possible datasets

• Separation into calibration (3/4) and validation (1/4) 

sets with Kennard-Stone
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Methods
• PLS

• Cross-validation for 

• the number of components to retain (up to 40)

• the best combination of pretreatment (among 

the 157)

• Python and scikit-learn

• CNN

• Python, keras, tensorflow

• Feature augmentation: 2nd order 

pretreatment combinations (157 data sets) 

=> 157*1050=164850 features

• Data augmentation and noise generation 

(140x5=700 synthetic spectra)
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Results
• PLS optimization by cross-validation

• Number of principal components

• Pretreatment combination choice

10/12



Results
• Comparaison PLS – CNN performance during

validation step
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Model SEc RMSEc RMSEv R²v RPD

PLS (Gaussian 1 + SavGol 4) 2.84 1.09 1.33 0.72 2.13

CNN 2.84 0.18 0.81 0.88 3.49



Perspectives

• External validation to test robustness (in progress)

• Tansfer learning

• Data augmentation using Variational AutoEncodeur

(VAE) and Conditional Variational AutoEncodeur

(CVAE)

• Model ensembling
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