

Use of convolutional neural network to predict yam (*D. alata*) tuber amylose content from near infrared spectra

Houngbo M. E.¹, Desfontaines L.², Mestres C.³, Davrieux F.³, Meghar K.³, Arnau G.¹, Irep JL.⁴, Marie-Magdeleine C.⁵, Rouan L.¹, Beurier G.¹, Cornet D.¹

1. CIRAD UMR AGAP

2. INRAE UR ASTRO

3. CIRAD UMR QUALISUD

4. INRAE UE PEYI

5. INRAE URZ

l'Europe en Guadeloupe en Guadeloupe

Biodiversité Végétale Tropicale d'Intérêt Agronomique

June 2021

- Yam importance
 - 4th most cultivated root tuber
 - Cultivate in intertropical zones
 - 60 million people's staple food
- Consumption mode
 - Boiled
 - Pounded

• Varieties from breeding programmes not widely adopted because quality not acceptable

- Yam composition: starchy (80% of dry matter)
 - Amylose & Amylopectin
 - Affects starch viscosity and friability of yam products
- NIRS can help to predict tuber quality
 - Amylose is difficult to predict by NIRS for RTB
 - Mostly C-H bonds (C₆H₁₀O₅)_n
 - Multiple wavelengths involved and not well known
- Two unsuccessful attempts to predict amylose content using NIRS with PLS for yam
 - R²=0,27 (Alamu et *al.*, 2019)
 - R²=0,18 (Lebot and Malapa, 2009)

- PLS: Partial Least Squares
 - "Linear"
 - Loss of information
 - Reduction of dimensions (loss of part of the information: 1050 variables -> 2-48 components)
 - Applies only 1 pretreatment combination (optimal but incomplete) => loss of noise but also loss of information
 - Sensitive to outliers and especially spectral outliers
 - Spectral => arbitrary suppression of spectra based on distances (Euclidean, Mahalanobis...) unrelated to the information carried
 - Risk of loss of information

- Al: Artificial Intelligence / DL: Deep learning
 - Management of overfitting designed in advance as inherent to DL methods
 - Noise is information: all features and spectral outliers are useful
 - Data augmentation is more efficient as the introduction of noisy spectra does not "harm" the performance of the algorithm
 - No need to choose between combinations of pretreatments (APA)

- CNN: Convolutional Neural Network
 - Reduce noise due to measurement conditions of spectra (convolutional layer acts like super-pretreatment)

Methods

- Sample preparation
 - 21 genotypes (*D. alata*)
 - Peeled tubers, dried, ground, sieved
 - 93 samples
- Reference measurements of amylose (INRAE, UR Astro)
 - Colorimetry adapted from ISO-6647 and calibrated with DSC measurements
- NIRS measurement
 - FOSS NIRsystems 6500 (INRAE, URZ)
 - 1050 absorbance values from 400 to 2498 nm
 - 2 repetitions per sample (186 spectra)

Methods

- Raw spectra +12 pretreatments used (gaussian, SavGol, MSC, SNV, Haar...) and their combination two by two => 157 possible datasets
- Separation into calibration (3/4) and validation (1/4) sets with Kennard-Stone

Methods

- PLS
 - Cross-validation for
 - the number of components to retain (up to 40)
 - the best combination of pretreatment (among the 157)
 - Python and scikit-learn
- CNN
 - Python, keras, tensorflow
 - Feature augmentation: 2nd order pretreatment combinations (157 data sets)
 - => 157*1050=164850 features
 - Data augmentation and noise generation (140x5=700 synthetic spectra)

Results

- PLS optimization by cross-validation
 - Number of principal components
 - Pretreatment combination choice

Log mean square error (validation)

Results

Comparaison PLS – CNN performance during validation step

Model	SEc	RMSEc	RMSEv	R ² v	RPD
PLS (Gaussian 1 + SavGol 4)	2.84	1.09	1.33	0.72	2.13
CNN	2.84	0.18	0.81	0.88	3.49

Perspectives

- External validation to test robustness (in progress)
- Tansfer learning
- Data augmentation using Variational AutoEncodeur (VAE) and Conditional Variational AutoEncodeur (CVAE)
- Model ensembling