

Suivi de la maturité de baies de raisin par imagerie hyperspectrale : cas d'étude en conditions contrôlées

Aldrig Courand; Maxime Metz; Carole Feilhes; Fanny Prezman; Eric Serrano; Ryad Bendoula; Maxime Ryckewaert

> Contenu de la présentation :

- 1. Présentation du stage
- 2. Démarches méthodologiques
- 3. Résultats
- 4. Conclusion

➤ 1. Contexte/Introduction

SPIR SPIR

Présentation du stage

Je suis en stage de fin d'étude du master CAC-OPEx de l'UBO à Brest. Stage de chimiométrie basé sur l'analyse de données.

Analyse des données de maturité de baies de raisin sur trois cépage différents deux rouge (Syrah et Fer) et un blanc (Mauzac)

➤ 1. Contexte/Introduction

Présentation du stage

Projet Viniot:

Projet européen de développement de capteur pour la vigne.

Comment améliorer la prédiction du taux de sucre dans les baies de raisin avec des données aberrantes ?

> 2. Démarches méthodologiques

Méthode Roboost

La méthode roboost est une méthode robuste permet de limiter l'effet des points outliers pour améliorer le modèle.

Contrairement à la PLS qui met un poids identique à chaque individu, la RoBoost-PLSR, quant à elle, pondère chaque individu.

> 2. Démarches méthodologiques

Retour sur le dispositif expérimental

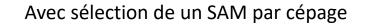
Le plan d'expérience

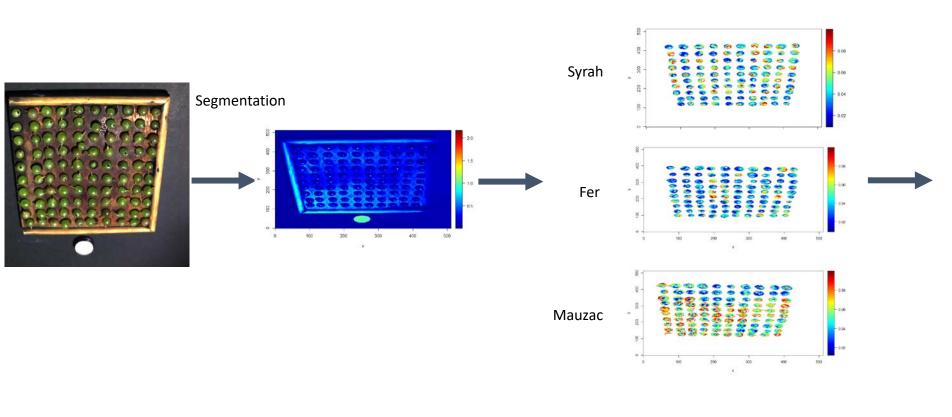
Eté 2020 Location: Gaillac 3 cépages: 2 rouges/1 blanc

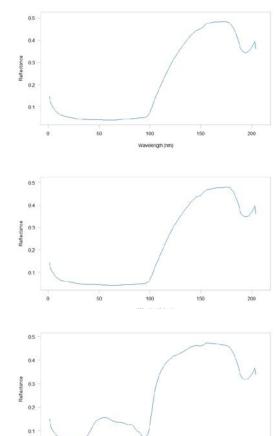

Mesures °Brix par bains densimétriques + analyses TAVP, acidité totale, pH, IPT, anthocyanes

Mesures Hyperspectrales

400nm 1000nm – Eclairages actifs






2 . Démarches méthodologiques

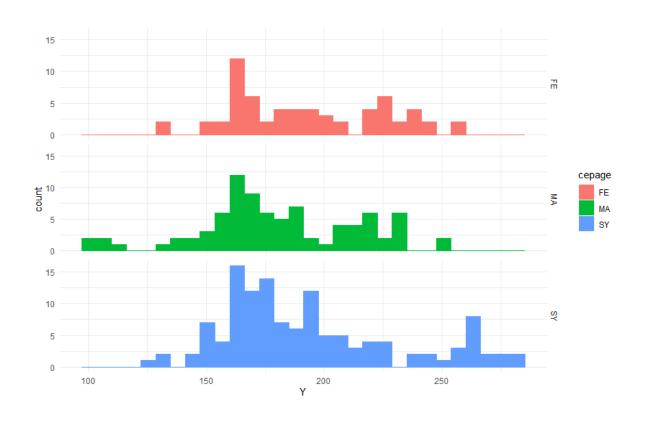
SPIR SPIR

Récupération des données

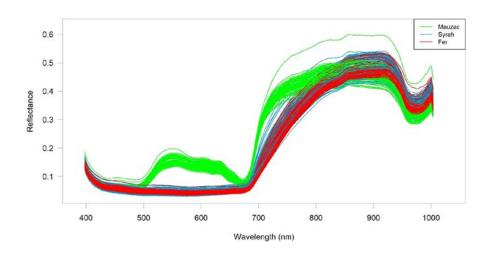
> 2. Démarches méthodologiques

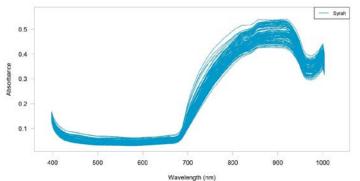
Création du jeu de test

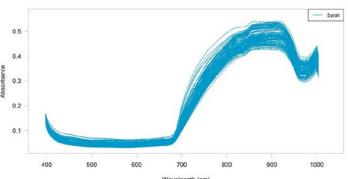
Pour les méthodes robustes, il nous faut un jeu test sans outlier.

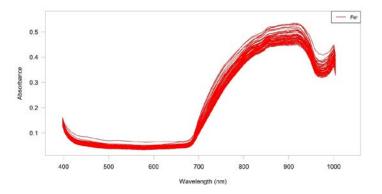

Les jeux seront donc faits de cette façon pour chaque cépage.

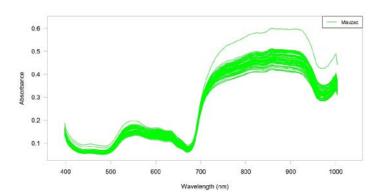
Cépage	Calibration	Test
Syrah	95	31
Fer	48	15
Mauzac	67	18
Rouge	142	47




Description des Y (Taux de sucre)

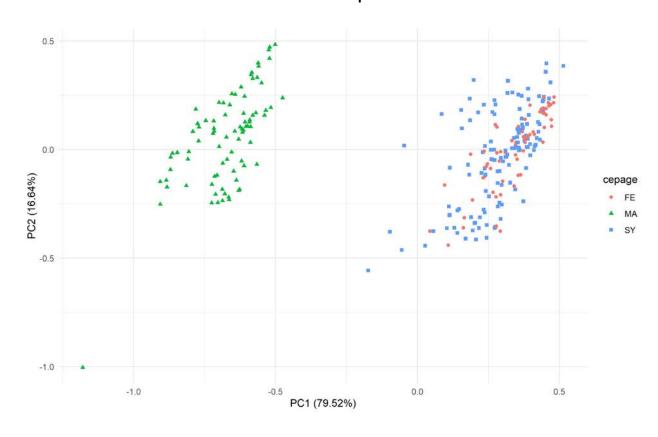





Description des X (spectre)

FE

SY

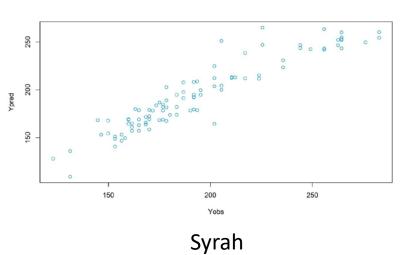

MA

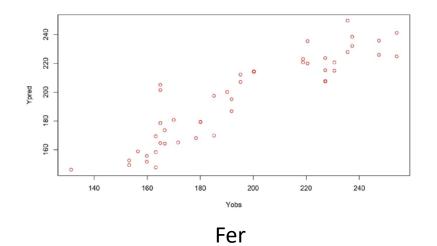
SPIR SPIR

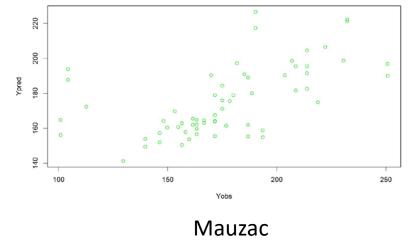
Description des X (spectre)

ACP sur les spectres

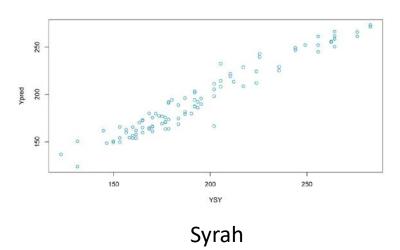
Cross-validation PLS

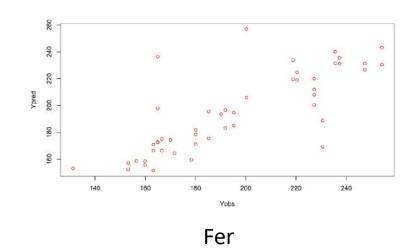

A 5 block

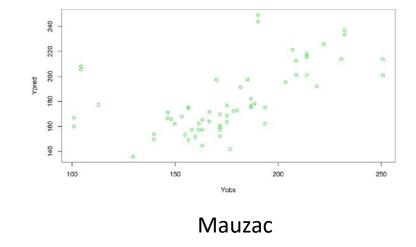

Cépage	nLV	rmsecv	madcv	r2cv
Syrah	6	9,31	8,09	0,937
Fer	7	19,45	15,84	0,623
Mauzac	6	28,21	18,40	0,298



Prédiction sur le jeux de Calibration


Cross-validation RoBoost-PLS


Cépage	nLV	rmsecv	madcv	r2cv
Syrah	5	8,96	6,86	0,999
Fer	6	10,10	14,30	0,999
Mauzac	6	27,30	17,68	0,998



Prédiction sur le jeux de Calibration

SPIR SPIR

Application des modèle sur le jeu de test

Modèle	Cépage	nLV	rmsep	madp	r2p
PLSR	Syrah	6	5,36	4,99	0,971
	Fer	7	11,69	12,04	0,788
	Mauzac	5	15,61	10,97	0,690
RoBoost-PLSR	Syrah	5	5,40	6,23	0,971
	Fer	6	10,10	10,20	0,849
	Mauzac	6	7,85	5,43	0,922

SPIR SPIR

Cépages rouges

Modèle	nLV	rmsecv	madcv	r2cv	rmsep	madp	R2p
PLSR	7	14,67	10,52	0,829	7,31	6,45	0,903
RoBoost-PLSR	6	13,5	10,3	0,999	6,34	6,14	0,927

> 4. Conclusion

On voit que la méthode Roboost-PLS est une méthode qui permet d'améliorer les prédictions sur des données agronomiques issues de la vigne.

Perspective

Évoluer vers une RoBoost-PLS2 et une RoBoost-PLSDA

MERCI DE VOTRE ATTENTION

