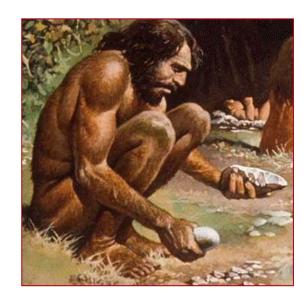
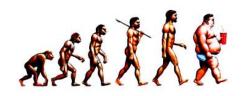


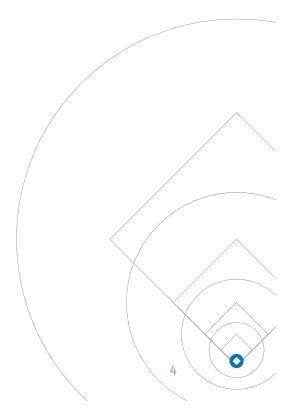
Spécificités des sols

"peu contraints par l'ADN"

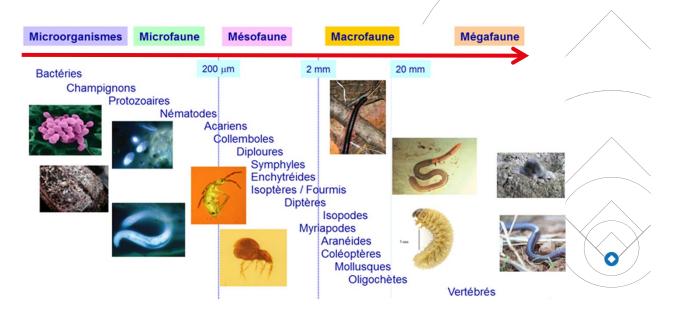
- O Composition variable (de 90% SiO₂ à 90% CaCO₃) donc populations hétérogènes
- Constituants d'intérêt souvent **peu concentrés** (Corg, N...), dans matrice variable
- ⇒ Prédictions moins précises que sur produits végétaux

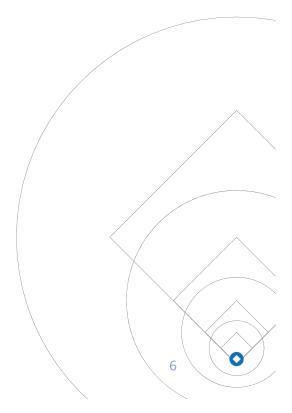

Set de validation indépendante bien représenté par le set d'étalonnage : rarement trivial




Jusqu'en 2003

assez basique


- Surtout NIRS* au laboratoire, avec PLSR (voire PCR)
- Physico-chimie des sols
- Etalonnages localisés voire régionaux à quelques exceptions près
- Problèmes validation indépendante / étalonnage représentatif


une gamme élargie de variables

- Toutes les variables physico-chimiques usuelles
 - Teneurs en C, N, K, P, Ca, Mg, Na, Fe, Al (tot. ou extr.), argile, pH, conductivité, agrégation
- Ruée sur les variables biologiques
 - Activités biologiques : respiration, enzymes (βglucosidase, phosphatases...), etc.
 - Biomasse et abondance des bactéries, champignons, protozoaires, nématodes, etc.
 - Diversité (indices)

étalonnages élargis

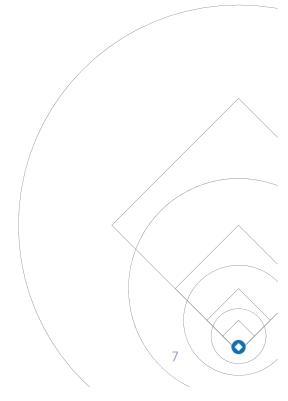
• Bases d'étalonnages nationales et au-delà

Geoderma 276 (2016) 41-52

ELSEVIED

Contents lists available at ScienceDirect

Geoderma


journal homepage: www.elsevier.com/locate/geoderma

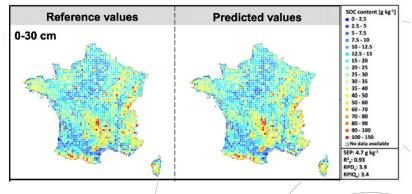
National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy

Michaël Clairotte ^{a,1}, Clovis Grinand ^{b,c}, Ernest Kouakoua ^b, Aurélie Thébault ^{b,2}, Nicolas P.A. Saby ^d, Martial Bernoux ^b, Bernard G. Barthès ^{b,*}

étalonnages élargis

Geoderma 276 (2016) 41-52

Geoderma


Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/geoderma

National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy

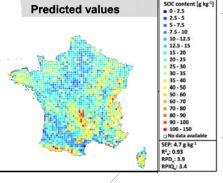
Michaël Clairotte ^{a,1}, Clovis Grinand ^{b,c}, Ernest Kouakoua ^b, Aurélie Thébault ^{b,2}, Nicolas P.A. Saby ^d, Martial Bernoux ^b, Bernard G. Barthès ^{b,*}

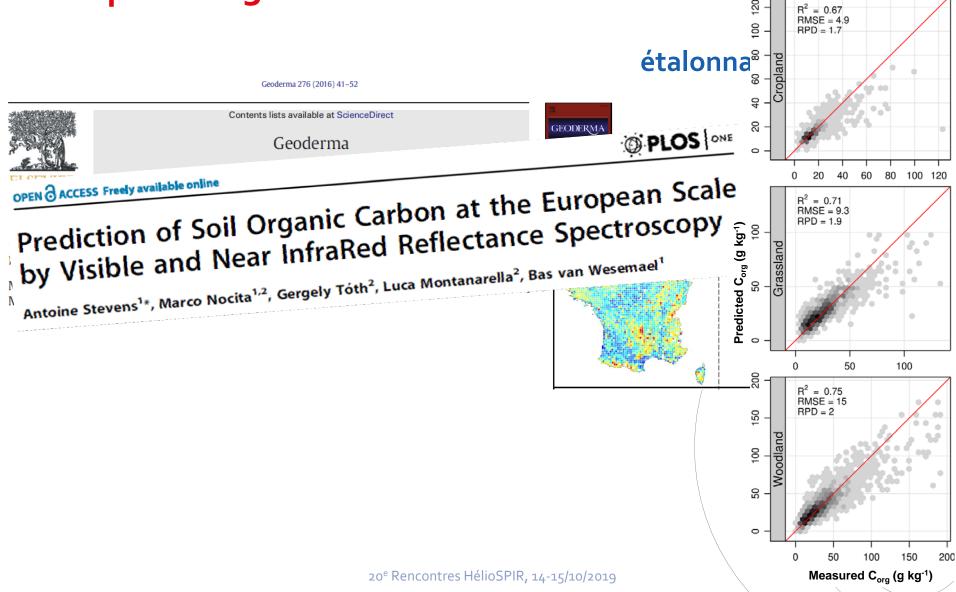
étalonnages élargis

Geoderma 276 (2016) 41-52

étalonnages élargis

Contents lists available at ScienceDirect


Geoderma



Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy

Antoine Stevens^{1*}, Marco Nocita^{1,2}, Gergely Tóth², Luca Montanarella², Bas van Wesemael¹

Geoderma 276 (2016) 41-52

Contents lists available at ScienceDirect

Geoderma

PLOS ONE

étalonna®

4

 $R^2 = 0.71$ RMSE = 9.3RPD = 1.9

20 40 60 80 100 120

RMSE = 4.9

OPEN @ ACCESS Freely available online


of Soil Organic Carbon at the European Scale

Contents lists available at ScienceDirect

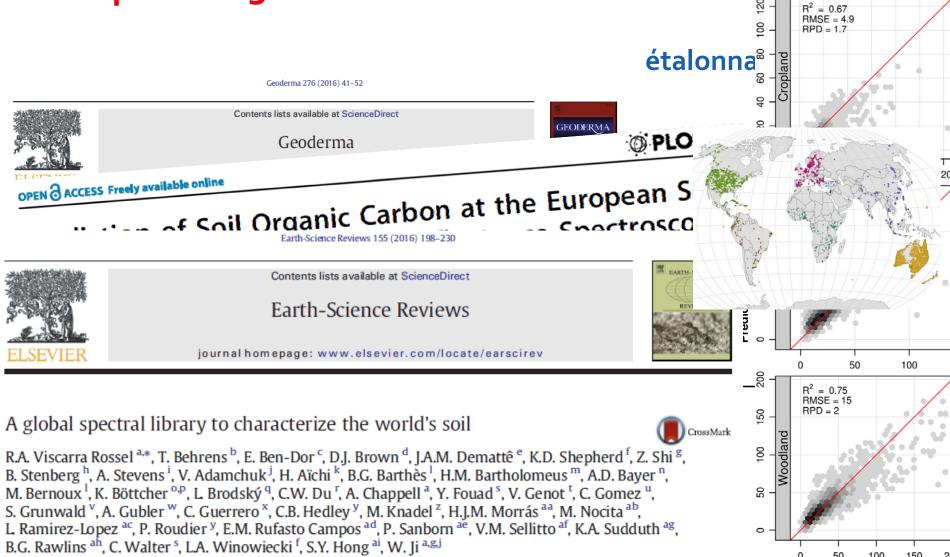
Earth-Science Reviews

journal homepage: www.elsevier.com/locate/earscirev

CrossMark

100 $R^2 = 0.75$ RMSE = 15 RPD = 250 100 20

150

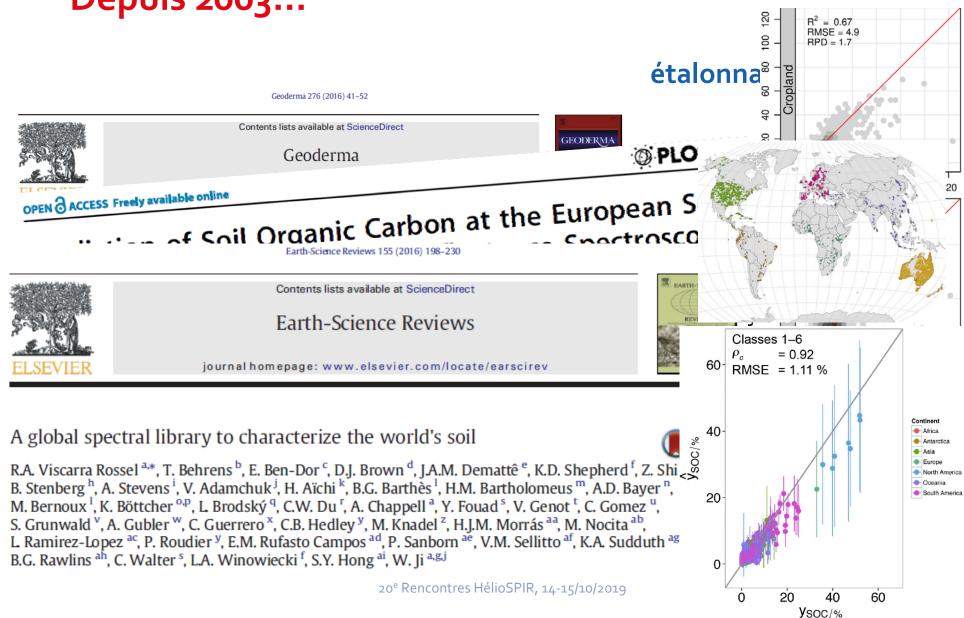

100

Measured C_{org} (g kg⁻¹)

A global spectral library to characterize the world's soil

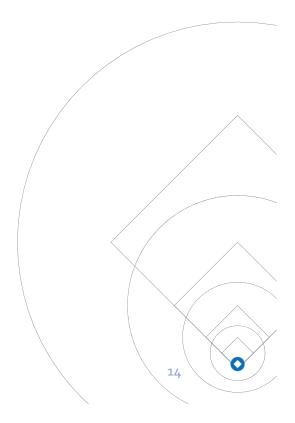
R.A. Viscarra Rossel ^{a,*}, T. Behrens ^b, E. Ben-Dor ^c, D.J. Brown ^d, J.A.M. Demattê ^e, K.D. Shepherd ^f, Z. Shi ^g, B. Stenberg ^h, A. Stevens ⁱ, V. Adamchuk ^j, H. Aïchi ^k, B.G. Barthès ^l, H.M. Bartholomeus ^m, A.D. Bayer ⁿ, M. Bernoux ¹, K. Böttcher ^{o,p}, L. Brodský ^q, C.W. Du ^r, A. Chappell ^a, Y. Fouad ^s, V. Genot ^t, C. Gomez ^u, S. Grunwald ^v, A. Gubler ^w, C. Guerrero ^x, C.B. Hedley ^y, M. Knadel ^z, H.J.M. Morrás ^{aa}, M. Nocita ^{ab}, L. Ramirez-Lopez ^{ac}, P. Roudier ^y, E.M. Rufasto Campos ^{ad}, P. Sanborn ^{ae}, V.M. Sellitto ^{af}, K.A. Sudduth ^{ag}, B.G. Rawlins ^{ah}, C. Walter ^s, L.A. Winowiecki ^f, S.Y. Hong ^{ai}, W. Ji ^{a,g,j}

20e Rencontres HélioSPIR, 14-15/10/2019

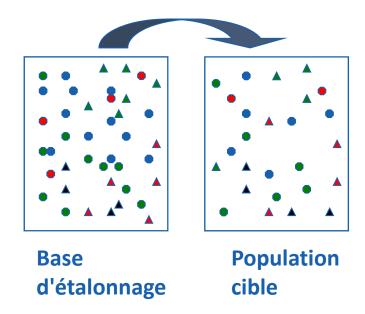


20e Rencontres HélioSPIR, 14-15/10/2019

150


100

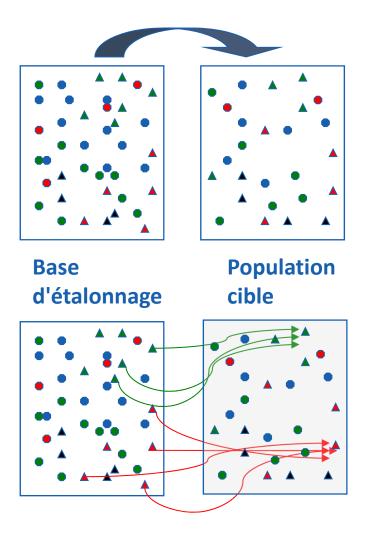
Measured C_{org} (g kg⁻¹)


étalonnages élargis

- Bases d'étalonnages nationales et au-delà
- Optimiser l'utilisation de ces librairies
 - ◆ Étalonnages locaux
 - Spiking

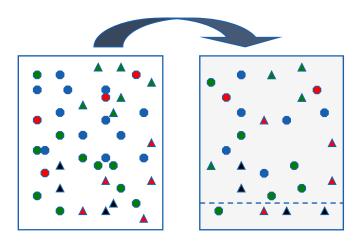
Etalonnage global vs. local

• Etalonnage global (usuel) : un étalonnage unique est construit et appliqué à tous les échantillons cibles


Etalonnage global vs. local

• Etalonnage global (usuel) : un étalonnage unique est construit et appliqué à tous les échantillons cibles

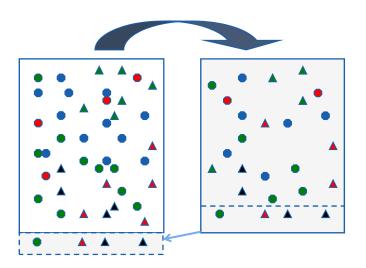
 Etalonnage local chaque échantillon cible est prédit à partir des étalons qui sont ses voisins spectraux


• Paramétrage

- seuil de voisinage (R ou H)
- nombres min et max de voisins
 [pas de prédiction si trop peu de voisins]

Spiking (ensemencement)

 On sélectionne des échantillons cibles si possible représentatifs

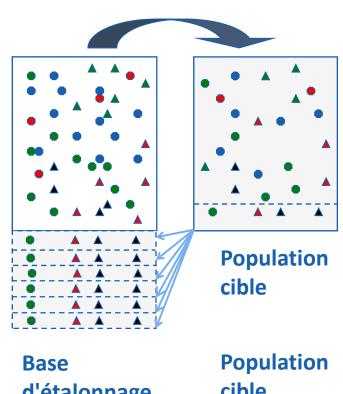

Base d'étalonnage

Population cible

Spiking (ensemencement)

 On sélectionne des échantillons cibles si possible représentatifs

 Ces échantillons viennent enrichir la base d'étalonnage

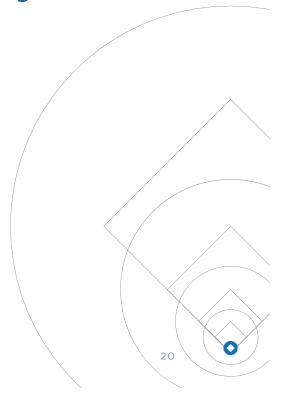


Base d'étalonnage enrichie Population cible

Spiking (ensemencement)

 On sélectionne des échantillons cibles si possible représentatifs

- Ces échantillons viennent enrichir la base d'étalonnage
- Ces échantillons sont surpondérés (éventuellement)
- Paramétrage
 - Nombre d'échantillons de spiking
 - Poids des échantillons de spiking


d'étalonnage enrichie

cible

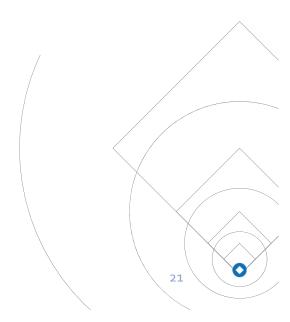
Chimiométrie

Arbres de régression, forêts aléatoires, réseau de neurones, machines à vecteurs de support, algorithmes génétiques, ondelettes... back propagation neural deep learning (!)...

• Etalonnages locaux

Available online at www.sciencedirect.com

Chemometrics and Intelligent Laboratory Systems 91 (2008) 94-98


Chimiométrie

Chemometrics and intelligent laboratory systems '/

www.elsevier.com/locate/chemolab

Soil parameter quantification by NIRS as a Chemometric challenge at 'Chimiométrie 2006'

Juan Antonio Fernández Pierna*, Pierre Dardenne

Available online at www.sciencedirect.com

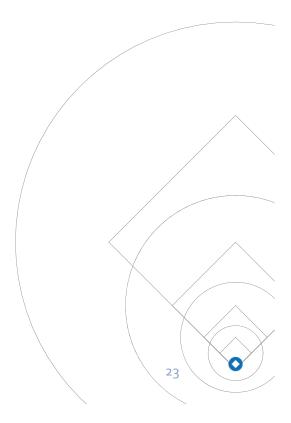
Chemometrics and Intelligent Laboratory Systems 91 (2008) 94-98

Chimiométrie

Chemometrics and intelligent laboratory systems '/

www.elsevier.com/locate/chemolab

Soil parameter quantification by NIRS as a Chemometric challenge at 'Chimiométrie 2006'


Juan Antonio Fernández Pierna*, Pierre Dardenne

Variable	R ² test					
	PLS	Back propagation neural network	LS-SVM	B-Splines + Radial basis function networks	PLS locale	PLS locale
N	0.56	0.63	0.82	0.44	0.77	0.80
Corg	0.50	0.77	0.89	0.53	0.87	0.92
CEC*	0.51	0.51	0.73	0.35	0.71	0.75
moyenne	0.52	0.64	0.81	0.44	0.78	0.82

^{*}capacité d'échange cationique (cmol(+) kg-1)

Spectroscopie de terrain

depuis la surface

Spectroscopie de terrain

sur petites mottes

au labo sur sol séché à l'air < 2 mm

depuis la surface

Spectroscopie de terrain

sur petites mottes

au labo sur sol séché à l'air < 2 mm

depuis la surface

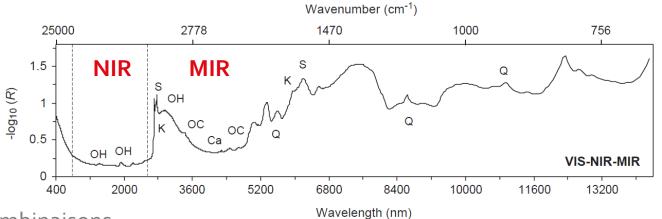
Spectroscopie de terrain

sur sol non remanié

Convertir les spectres de terrain en spectres de labo ?

> au labo sur sol séché à l'air < 2 mm

o MIR

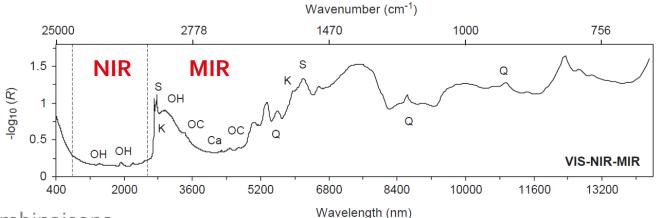

- bandes nettes
- fondamentales
- forte absorption

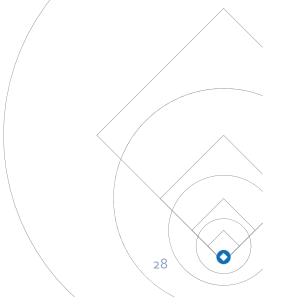
NIR

- chevauchements
- harmoniques et combinaisons
- faible absorption

Prédictions plus précises avec MIRS qu'avec NIRS

Moyen infrarouge


o MIR


- bandes nettes
- fondamentales
- forte absorption

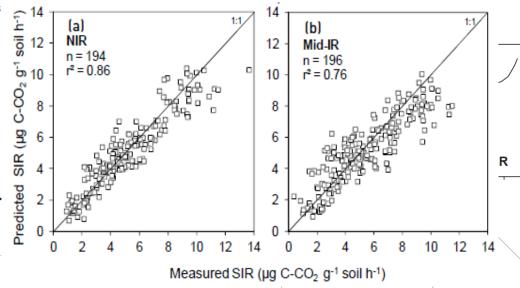
O NIR

- chevauchements
- harmoniques et combinaisons
- faible absorption
- Prédictions plus précises avec MIRS qu'avec NIRS ... sauf pour sols des régions chaudes

Moyen infrarouge

O MIR

M. Rabenarivo et al., J. Near Infrared Spectrosc. 21, 495–509 [2013]

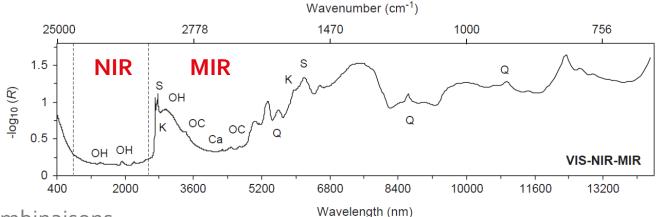

Received: 22 May 2013
Revised: 4 October 2013
Accepted: 7 October 2013
Publication: 3 December 2013

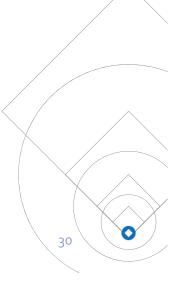
Comparing near and mid-infrared reflectance spectroscopy for determining properties of Malagasy soils, using global or LOCAL calibration

Michel Rabenarivo, a.b Lydie Chapuis-Lardy, a.c Didier Brunet, d Jean-Luc Chotte, d Lilia Rabeharisoa b and Remard G. Rarthès d

Moyen infrarouge

Prédictions plus précises avec MIRS qu'avec NIRS ... sauf pour sols des régions chaudes


o MIR


- bandes nettes
- fondamentales
- forte absorption

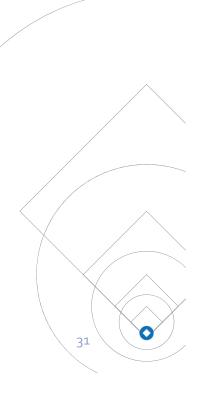
O NIR

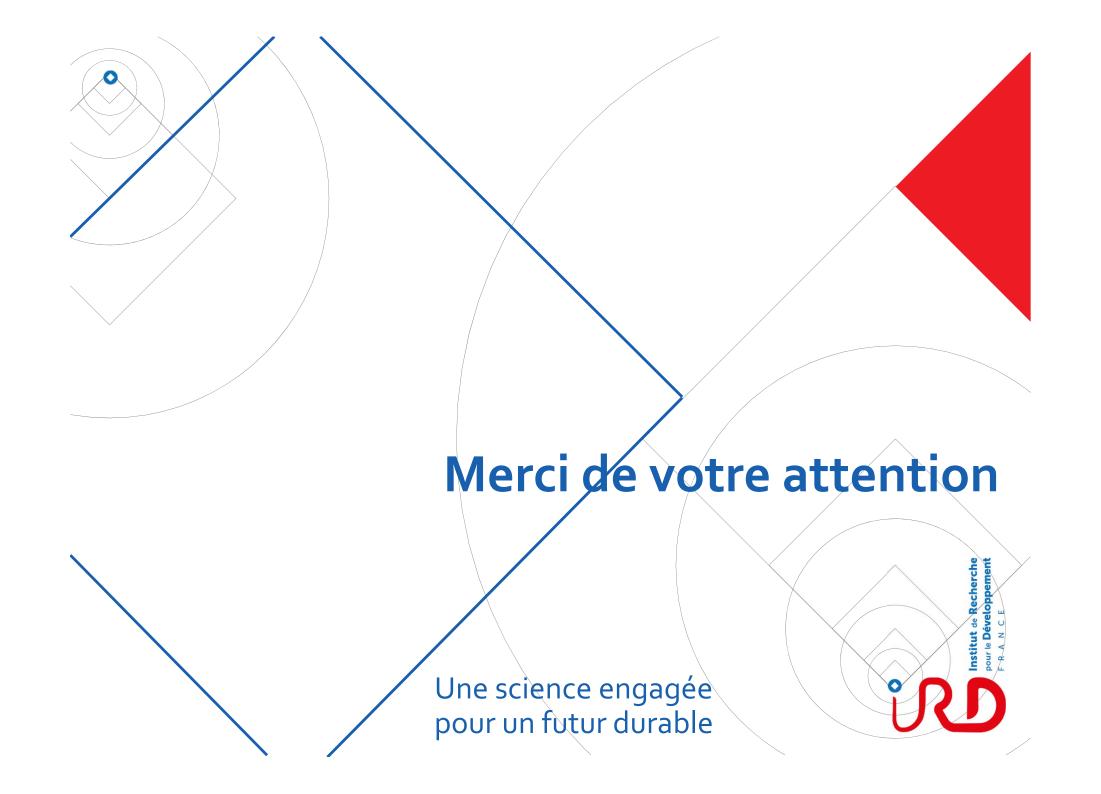
- chevauchements
- harmoniques et combinaisons
- faible absorption
- Prédictions plus précises avec MIRS qu'avec NIRS
 - ... sauf pour sols des régions chaudes
 - + nécessité broyage fin < 0.2 mm (tamisage < 2 mm ok pour NIRS)
 - + surtout au labo (appareils portatifs fragiles ?)

Moyen infrarouge

Conclusion

sur la période 2003-2019...


 De la démonstration du potentiel de l'infrarouge à une recherche d'opérationnalité des procédures


Apparition d'offres commerciales

SoilCares (Wageningen, NL)

